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Abstract: The safety of the open-pit overburden dump slope largely depends on the geomaterial size and 

shape. The shape of these geomaterials contributes to their shear resistance against sliding. The present 

investigation proposed a method to characterize the geomaterial using the digital image processing tech-

nique. The resources invested in this work are a simple digital camera and a computational toolbox. The 

system estimates the size distribution of geomaterial. The study also proposed a methodology for recon-

structing the 3D geometry of the mine dump from the images. The advantage of the method is a low-cost, 

quick assessment of the dump geomaterial, and outcomes can easily be used in a numerical toolbox. The 

study was conducted in Barakar Valley Coalfields, West Bengal, India. The geomaterials above 4 mm 

sizes are considered in this work. The results matched the mechanical sieving output of the particle size 

distribution curve. 

Keywords: overburden dump, geomaterial, digital image processing, particle size distribution, 3D recon-

struction 

1. INTRODUCTION 

In India, the contribution of surface mining to coal production is over 90 percent (Mishra 

et al. 2024). Surface mining generates the vast amount of overburden (Chand and 

Koner 2024) and this overburden material are dumped internally or externally based 

on area of requirement. Open-pit dump slope is an artificial structure built on this 
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earth to store and manage mine waste overburden geomaterials. The planning and 

design of dump slopes require understanding the overburden geomaterial characteris-

tics (Chand and Koner 2016). Traditional drilling and blasting are adopted to remove 

overburden in the open-pit mine; the performance of this operation influences the size 

and shape of the geomaterial produced. In a recent study showed that the stability of 

the dump slope largely depends on the alignment of the dumping sequence and its 

orientation (Koner 2021). Storage of higher-size overburden geomaterials at the bot-

tom and sequentially heightening dump slopes with medium and smaller sizes could 

have been the best way to manage the stability. The waste geomaterials are randomly 

deposited at the internal or external mine dump, making it a heterogeneous assembly. 

In the engineering investigation, the cumulative and blending mixture of rock and soil 

in the dump slope was compromised, and associated errors were ingrained in the sta-

bility analysis. Reports of slope failure are only available when the factor of safety is 

greater than 1. So, we needed to characterize dump geomaterials using a non-evasive 

method for a quick and exhaustive onsite assessment. 

Overburden slopes are composed of rock fragments and loose soil, which are 

densely packed. Collecting geomaterial samples from the slope is complex, particular-

ly far inside the assembly. In the physicomechanical characterization of dump geo-

materials, size, shape, and texture are necessary (Xu et al. 2008). The quantitative 

distribution of size and shape in the blasted overburden in open-pit mines indicates the 

performance and efficiency of the total mining production cycle (Sereshki et al. 2016). 

Rock particles size, shape, and texture in quarry production must fit the customers’ 

requirements, for example, highway, railway construction companies, building indus-

tries, etc. (Karakus et al. 2010). 

Characterizing the dump geomaterial is the primary goal of geotechnical engineers. 

The geotechnical data obtained from various tests is highly subjective, and variability 

in dump geomaterial conditions increases over time and space. Different testing meth-

ods exist to characterize and classify dump geomaterial, and one of the most prelimi-

nary methods is determining grain size distribution. It assumes that dump geomaterials 

with similar sizes and shapes have uniform properties. The laboratory’s estimation of 

particle size distribution involves mechanical sieving for coarse-grained geomaterials. 

Hydrometer analysis was followed for fine-grained geomaterials. A typical grain size 

distribution curve obtained from sieving is shown in Fig. 1. 

A single linear dimension, which represents the minimum square sieve aperture 

through which the particle has just passed, is used to characterize the particle size in 

sieve analysis (Ghalib and Hryciw 1999). The particles shape is a determining factor in 

the results of sieving (Mora and Kwan 2000; Mora et al. 1998; Kwan et al. 1999). Me-

chanical sieving involves passing the geomaterial through a set of standard sieves. The 

weight of geomaterials retained on each sieve set is measured and plotted as a passing 

percentage against the particle size. There are several limitations to this method, which 

are outlined below.  
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Fig. 1. Grain size distribution curve (Mir and Ashraf 2019) 

Geomaterial properties depend not only on the grain size distribution of particles but 

also on other factors like mineral constituents, elemental structural arrangements, geo-

logical history, etc. The sieving apparatus also require maintenance at regular interval. 

On repeated use, the sieve openings get distorted and give erroneous results. More 

importantly, sieve analysis does not necessarily measure the particle diameter in the 

conventional sense. Geomaterial particles are three-dimensional, and particle size is 

determined by sieving, which captures the intermediate dimension. 

In the case of fine-grained geomaterials, sieve analysis is not appropriate. The physical 

properties of clay, such as plasticity, control the mechanical behaviour rather than 

particle size distribution. Hydrometer analysis is based on the sedimentation principle 

and Stoke’s law. The grain size is calculated from the sedimentation distance of geo-

material particles. The limitations of hydrometer analysis are described here. 

It assumes that all geomaterial particles are spherical. However, clay and silt parti-

cles are plate-like and flaky. Overburden geomaterial contains particles with different 

mineral constituents; thus, the specific gravity cannot be characterized using an aver-

age value. The test assumes that the geomaterial particles are separated from one anoth-

er. Although a dispersing agent is added to the geomaterial-water suspension to ensure 

the validity of this assumption, some particles flocculate and settle more rapidly than 

individual particles. The test also assumes that the particles do not interact with one 

another. However, this may not necessarily be true if the concentration of the geo-

material-water suspension is high.  

Automation is gaining much importance with the advancement of technology and 

the use of computers. It not only expedites the process, but also produces more objec-

tive results. This work uses automation procedures to determine the grain size distri-

bution of waste overburden geomaterial. 
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There are many characterisation methods (Gee and Or 2002), and the latest digital 

image processing technique uses a simple digital camera. Image analysis is a benefi-

cial method for determining the particle-size distribution of soils. It offers advantages 

such as reduced testing time, lower expenses, and improved working environment 

(Akbulut et al. 2011). Several studies have employed image analysis to determine the 

size distribution, particle shape, and surface roughness of aggregates in two and three 

dimensions (Taylor 2002; Maerz 2004; Fernlund 2005a; 2005b; 2005c; Tutumluer et al. 

2005; Lira and Pina 2007; Maerz and M. Lusher 2001). 

Overburden dump 2D images have some particular characteristics compared to other 

images. Under the front lighting illumination condition, which is the typical case, geo-

material particle images have the following features: (1) uneven background and fore-

ground for which a simple threshold algorithm cannot be applied to segment the images, 

(2) each geomaterial fragment possesses textured surface and multiple faces, which of-

ten causes an over-segmentation problem, (3) geomaterial fragments overlap each other, 

resulting some part hidden underneath, and incompleteness of the boundaries of geo-

material particles, (4) clubbing of geomaterial fragments form a large cluster, (5) rain, 

snow, or fantastic soil material makes geomaterial assembly as a clump in the images. 

This work developed an automated algorithm to identify and measure overburden 

geomaterial fragments using intensity images of the surface of the overburden dump. 

The precise volume of the mine overburden dump is often compromised with the 

traditional surveying techniques used in the fields. An accurate slope profile (geometry) 

is required for structural stability analysis. Surface mine demands a fast but straightfor-

ward approach that will give a reasonable estimation of the 3D surface of the overbur-

den dump vis-à-vis that would be useful for numerical analysis to assess the stability. 

The image processing technique has an answer to this particular problem. 

So, this work will essentially concentrate on image processing techniques for char-

acterizing dump geomaterial. 3D mine dump profile will be reconstructed from cam-

era images taken at different angles from different sides of the dump in broad daylight 

in a mine in the Barakar Valley Coalfields, India. 

2. MATERIALS AND METHODOLOGY 

The study uses a SONY Cyber-Shot DSC-HX400V camera for collecting 2D images 

of the mine dump and overburden geomaterial. A mine of Barakar Valley Coalfields 

was selected for this study. The mine area is bounded by the rural areas of Jamuria CD 

Block on the north, Kenda Area and Kajora Area on the east, Bankura district across 

the Damodar on the south, and Satgram Area and Sripur Area on the west. The mine 

area is located around 23.645711°N and 87.117422°E. 

Samples were collected and kept at the testing facility of our institute. Geotechnical 

tests were conducted, and the grain size distribution curve profile obtained from image 
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analysis was compared. The study used MATLAB (Hunt et al. 2001) and MESHLAB 

(Hunt et al. 2008) for the entire computation. 

The image processing for the geomaterial characterization starts with pattern recogni-

tion of dump geomaterial particles and fragments, i.e., image segmentation. Segmenta-

tions are of two types; the first is segmentation based on grey levels (called Image Binari-

zation). A grey-level image is processed and converted into a binary image. Segmentation 

is based on particle shapes in a binary image; overlapping particles in contact will split, 

and over-segmented particles will be merged based on prior knowledge, such as shape 

and size, etc. 

Image segmentation divides an input image into distinct regions of uniform proper-

ties, such as intensity, colour, and texture (Vangla et al. 2014). The methods are often 

effectively used in many application areas of image processing. Segmentation algo-

rithms for monochrome (grey-level) images are based on two fundamental grey-level 

values: similarity and discontinuity. The principal approaches in the first category are 

based on thresholding, region growing, and region splitting and merging. In the sec-

ond category, the method is partitioning an image based on abrupt changes in the grey 

level. This category's principal areas of interest are detecting isolated points, lines, and 

edges in a snap. The choice of segmentation on dump geomaterial based on the simi-

larity or discontinuity of the grey level values depends on developed sub-algorithms 

and applications. 

Edge detection is a developed segmentation algorithm used in this framework (Lu 

et al. 1988). The edge detection process has followed the flow chart shown in Fig. 2. 

 

Fig. 2. Flow chart of edge detection process 
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The process starts with laying the geomaterial on a plane table. The geomaterial 

particles were placed so that no particle touched/overlapped with any other particle 

(see Fig. 3). The camera was mounted perpendicular to the plane, and an image was 

acquired. As mentioned in the process, this image is input (see Fig. 2). Holes were 

removed from the processed image to detect the edge.  

  

Original image Greyscale image 

  

Image with holes Image with holes removed 

Fig. 3. Laboratory scale experiment on edge detection process 

The split algorithm consists of three different processes order, namely (1) detection 

of holes inside an object, (2) multiple contacts in between particles, (3) two or three 

particles in contact. All three processes are essential for the performance of this algo-



Open-pit overburden dump characterization using digital image processing technique 87 

rithm. A watershed transform algorithm has been used for this process. The Watershed 

Transform combines elements based on discontinuity and similarity methods. The 

initial development was with greyscale images (Rubin 2004); now, this transform has 

been modified and extended to a computationally efficient form and applied to colour 

images. This method has been used to detect dump geomaterial grains or particles. 

The result of the developed process is shown in Fig. 4, revealing the number of parti-

cles captured.  

The advantages are: (a) The resulting boundaries are closed and connected. Traditional 

edge-based techniques often form disconnected boundaries that need post-processing to 

produce closed regions, (b) The edges of the resulting areas always correspond to con-

tours similar to objects. This contrasts with split and merge methods where the first 

splitting is often simple regular sectioning of the image, leading to sometimes incon-

sistent results, (c) The union of all regions. 

  

Split image Numbering of objects 

Fig. 4. Laboratory scale experiment on splitting and numbering of dump geomaterial particles 

The proposed method works well for the sparsely distributed geomaterial particle 

and the overlapping condition.  

3. RESULT AND DISCUSSION 

The methodology applies to random 2D images of overburden dump geomaterial 

aggregate (see Fig. 5). The picture (see Fig. 5) was segmented to calculate the area 

of individual particles from the binary image using the code. The code works and 

detects the particle individually and distinctly, as shown in the segmented image 

(see Fig. 6). 
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Fig. 5. Mine dump geomaterial aggregate 

  

Image with touching particles Image with splitter and numbering 

Fig. 6. Segmented mine dump geomaterial aggregate 

The code’s effectiveness is that segmented images capture particles of different size 

ranges except for the finer ones, making it a handy and portable tool for reconnais-

sance surveys in the overburdened dumpsite. 

  

Original image Entropy filtered image 

Fig. 7. Entropy filtering for sparsely placed rock particles (Entropy = 0.9334) 
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Image entropy is a quantity that describes the “business” of an image, i.e., the amount 

of information that a compression algorithm must code. Low entropy images containing 

a large amount of black sky have very little contrast and large runs of pixels with the 

same or similar DN values. A perfectly flat image will have an entropy of zero. Con-

sequently, they can be compressed to a relatively small size. On the other hand, high 

entropy images, such as an image of heavily cratered areas on the moon, have a great 

deal of contrast from one pixel to the next and consequently cannot be compressed as 

much as low entropy images. The entropy is found in the range of 0.9334, shown in 

Fig. 7. So it indicates these image does not require further processing for compres-

sion. 

In statistics, the standard deviation (SD) is a measure used to quantify the variation 

or dispersion of a set of data values. A low standard deviation indicates that the data 

points are close to the set’s mean (the expected value). In contrast, a high standard 

deviation indicates that the data points are spread over a broader range of values. The 

standard deviation filter estimates the standard deviation and assigns that value to the 

centre pixel in the processed image. It can measure the variability, so it is used in edge 

sharpening, as the intensity level changes at the edge of the picture by a considerable 

value. The SD filter analysis is described in Fig. 8. 

  

Original image Filtered image 

Fig. 8. Standard deviation filtration for sparsely placed rock particles (SD = 1.6059) 

3.1. MINE DUMP MATERIAL CHARACTERIZATION 

The image shown in Fig. 9 represents a pile of loose soil aggregate. The geomaterial was 

placed at the surface mine’s top of the internal overburden dump. Initially, the image 

was segmented using the developed method. The resulting segmentation is shown in 

Fig. 10. 
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Fig. 9. Loose soil aggregate of the dump geomaterial 

at Barakar Valley Coalfields 

  
Thresholding Point detection 

Fig. 10. Dump geomaterial after thresholding 

Laboratory Sieve analysis was conducted as per ASTM standards. Samples weighing 

500 and 152 g were taken respectively and sieved through sieve sizes of 4.75, 5.6, 10, 

and 12.5 mm. Only gravel was taken, i.e., a sample that retains (>=50%) on a 4.75 mm 

and above sieve. A Sieve shaker was used for sieve analysis and sieved for 10 min 

(see the setup in Fig. 11). 
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Fig. 11. Sieve Shaker set up for the present investigation 

Soil samples weighing 152 grams were placed on white chart paper. High-resolution 

images of the soil sample were taken with a camera. A ruler was placed at the bottom 

of the model, which was included in the picture. We have tried to put the light from all 

sides to avoid shadow effects. The particles were separated from each other to avoid 

overlapping. 

 

Fig. 12. Detected 262 particles of gravel sample 
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After importing the image in ImageJ (Abràmoff et al. 2004), the scale of the image 

was set. The scale was developed to the mm level. Two ends of the scale sizing 10mm 

were selected and calibrated accordingly. We then generate the image showing the soil 

sample’s total particles, diameter, and area. A total of 262 particles are detected, which 

is highly accurate (Fig. 12). 

Case 1 

Initially, we took 500 g of gravel sample (50% or more particles retained in the 4.75 mm 

sieve and above). Then we sieved the geomaterial particles with the help of a sieve 

shaker. After that, we weighed the soil sample retained on various sieves, calculated 

the percentage finer, and plotted a grain size distribution graph. 

We took a sample weighing 152 g from the above model and found the grain size 

distribution using the image processing technique. Here the categorisation of particles 

is done concerning the number of particles, whereas in sieve analysis, it was done by 

taking the mass of the soil sample. 

The size distribution curve determined by image analysis differs from the sieve 

analysis (see Fig. 13). This difference can be mainly due to the shadow effects of the 

particles, the shape of the particles is assumed wrong, or maybe since a small portion 

of the soil was taken (in image analysis), there is a possibility that the small amount of 

soil contains particles of the mostly same size. There is a constant gap between the 

two plots, and the percentage more delicate than 12.5 mm increases in the case of im-

age analysis. In the following point, we will see the graph’s trend when the sample's 

exact weight is considered for both the sieve and image analysis. 

 

Fig. 13. Grain size distribution from the sieve and image analysis 

when a small sample (152 g) was taken for image processing from 500 g sample 
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Case 2 

In this case, we consider the entire sample, i.e., 152 g. of soil sample used for image 

processing in sieve analysis (see Fig. 14). We see that both the graphs almost coincide. 

Initially, for particles of 4.75 mm, both the lines almost coincide, continue for some 

time, and again part ways by a small gap that ends up very close. 

 

Fig. 14. Grain size distribution from the sieve and image analysis 

when the entire sample (152 g) was taken for image processing 

So, from this, we can say that Case 2 gave a better result than Case 1. When we con-

sidered the entire sample for sieve analysis, the accuracy increased suddenly. This gives 

us an idea about grain size distribution using image processing techniques. This reduces 

time and workforce and is also cost-effective. 

3.2. 3D RECONSTRUCTION OF MINE DUMP 

We have captured hundreds of overburden dump images at the mine site. The image 

was taken at a distance all-round the dump. The weather was a bright sunny day. 

Two image pairs of adjacent viewpoints were taken of the mine dump and undistort-

ed to remove any lens distortions. Lens distortions can affect the accuracy of the final 

reconstruction. The image was also converted to grayscale to perform various image 

processing techniques. The process followed is summarized in Fig. 15. 

Good features from the image pairs were tracked. Here we use the SURF algorithm 

for feature detection and matching. The SURF is a robust local feature detector meth-

od (Bay et al. 2006), which is inspired by SIFT but works differently. SURF charac-

teristics are extracted using a Hessian Matrix (Neubeck and Van Gool 2006). Increas-

ing the NumOctaves (Number of Octaves) helps us to detect large-scale features in 

high-resolution images. It is an integer scalar greater than or equal to 1. Increasing this 
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value helps us see more giant blobs. A Region of Interest (ROI) was also specified, 

which helps detect the corners within a particular area of a size determined by width 

and height. The “Upright” feature’s function helped us improve the matching as long 

as the camera motion involves little or no in-plane rotation. 

 

Fig. 15. Flow chart of 3D reconstruction for mine dump 

The sample image pair has shown in Fig. 16. The undisturbed couple of images ac-

quired by the camera and used as input in the present algorithm are shown in Fig. 17. 

The image pairs are overlapped (see Fig. 18), the point correspondence is found, and 

the features are matched. From the images, a lot of wrong-matched points have been 

seen. Those points were eliminated using the RANSAC algorithm (Fischler and Bolles 

1981). It helps select a random subset of data, and the model for the selected data was 

found. All the data was tested against the model, and the inliers were determined 

based on some threshold. If the distance between the given data and model is less than 

the threshold, it is considered an inlier and taken as a correctly matched feature. 
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Fig. 16. Two image pairs of the dump 

 

Fig. 17. Undistorted image 

The point matches were stored in a particular variable. The camera pose of the cur-

rent view concerning the previous picture was estimated. The carriage is computed up 

to scale, meaning that the distance between the cameras in the last idea and the current 

view is set to 1, corrected by bundle adjustment. 
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 (a) (b) 

Fig. 18. Overburden heap image pairs showing feature matches: 

(a) all matched features, and (b) only the correct matches 

Every camera poses estimation from one view to the next and contains errors. The 

errors arise from images’ imprecise point localization, noisy matches, and inaccurate 

calibration. These errors accumulate as the number of views increases, an effect known 

as drift. Refining camera poses, and 3-D point locations are one way to reduce the im-

portance. The nonlinear optimization algorithm, implemented by the bundle Adjust-

ment function, was used for the refinement. The bundles of light rays that are leaving 

the 3D feature and converging on each camera center are referred to as bundle block 

adjustments. These changes are made in order to achieve the best possible results with 

regard to both the feature and camera placements (Triggs et al. 2002). 

3.3. DENSE RECONSTRUCTION 

Again, the above operations were performed through all the images (see Fig. 19). This 

time a dense set of corners were detected and tracked across all views. The size of the 

points in the point cloud was given, and the re-projection error was removed.  

The importance of three-dimensional reconstruction comes from computer algo-

rithms’ inability to make significant inferences regarding our three-dimensional world 

without input from all spatial dimensions. Commonly, we fill this gap in the algorithm 

ability using tricks and manipulation based on our understanding of the space as hu-

mans rather than the computer seeing in 3D. 

https://in.mathworks.com/help/vision/ref/bundleadjustment.html
https://in.mathworks.com/help/vision/ref/bundleadjustment.html
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Fig. 19. Images of the mine dump from all viewpoints 

 

Fig. 20. Point cloud generated after processing 

3.4. MESH GENERATION 

The 3-D reconstruction (see Fig. 20) method is incomplete unless we create a surface 

out of the point cloud. A mesh was created from the point cloud using Poisson Surface 

Reconstruction (Kazhdan et al. 2006) in Fig. 21. Surface reconstruction can be ac-

complished by a variety of well-known techniques, including Poisson Surface Recon-

struction (Kazhdan and Hoppe 2013), Delaunay Triangulation (Attene and Spagnuolo 

2000), and more techniques, but Poisson surface reconstruction is a prevalent method 
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for reconstructing surfaces because to its exceptional stability and reliability (Berger 

et al. 2014). Creating a mesh is very much important as we can do various measure-

ments on the object. The volume and area of the mine dump can be calculated.  

A section from the solid object has also been generated to get the 2D profile of the 

surface in Fig. 22. The 2D area can be cut in various intervals per the numerical stabil-

ity analysis requirement following this algorithm. 

 

Fig. 21. Mesh surface generated using Poisson surface reconstruction 

 

(a) (b) 

Fig. 22. 3D reconstructed model of overburden heap: (a) final mesh surface of the 3D reconstructed model, 

and (b) a cross-sectional view of the 3D reconstructed model showing the 2D profile 
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4. CONCLUSIONS 

The method described above is a non-contact automated geomaterial characterization 

technique. The method may be used for extensive overburden dump geomaterial size 

characterization in the field. So, it is an alternative to the traditional sieving analysis, 

which requires much time for sample preparation.  

The significant advantage of the proposed method is that there is no upper bound 

for the rock particle size composed in the overburden dumps. This algorithm may use 

as a decision-making toolbox for mine management to quickly assess geomaterial size 

ranges in the mine dump. 

The 3D surface reconstruction of the mine dump is another essential aspect of the 

present study. This method has a significant advantage over the conventional survey-

ing process in predicting accurate surface topography of the mine dump – the numeri-

cal analysis requires precise geometry to estimate stability conditions. Thereby present 

method proposed an excellent alternative tool for this very purpose.  
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