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Abstract: Selecting an optimal mining method is a complex and critical decision in underground mining, 

influenced by multiple geological, technical, and economic parameters. This study introduces a novel frame-

work that combines Hierarchical Clustering (HC) and Correspondence Analysis (CA) to enhance the selec-

tion process by evaluating the consistency and similarity among outcomes from both first-pass methods 

(UBC and Nicholas) and several multi-criteria decision-making (MCDM) techniques (including AHP, 

EDAS, PROMETHEE II, AHP-PROMETHEE, TOPSIS, and VIKOR). The proposed HC-CA approach 

identifies consistent conflicts among the considered mining methods and quantifies the agreement among 

the initial assumptions of the adopted selection procedures. A case study of a Pb-Zn deposit demonstrates 

that the framework can effectively detect consistent and co-occurring (i.e., conflicting) solutions, such as 

Cut-and-Fill Stoping, Shrinkage Stoping, and Sublevel Stoping. The results show that the adopted design 

criteria align more closely with the UBC selection method, compared to the Nicholas selection procedure 

for the considered deposit. Additionally, applying the HC-CA approach to the input matrices prior to 

applying the MCDM methods can yield different results, compared to subjecting the MCDM output 

scores to the proposed framework. This integrative approach extends traditional selection procedures and 

links them with commonly used MCDM methodologies and unsupervised machine learning methods by 

enabling flexible strategy development, with the inclusion of considering mixed-mining-method scenarios 

tailored to the deposit. Additionally, the approach offers improved decision support in early project stages 

by visualizing affinities among different assumptions and hence potentially mitigating biases during the 

following design stage. 
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1. INTRODUCTION 

When opening a new mine or developing a new section of an existing one, a difficult and 

responsible task is the choice of a suitable mining method. In general, methodologies for 

selecting a mining method can be divided into three main groups: qualitative methods, 

numerical methods and decision-making methods. In the case of qualitative methods, 

the choice of a mining method is based on a descriptive assessment of the physical-

mechanical characteristics of the working environment (Boshkov and Wright 1973; 

Hartman 1987). Numerical methods use utility scores, that reflect the capabilities of 

each mining method with respect to the physical-mechanical characteristics and the 

geometry of the ore deposit (Nicholas 1981; Millet-Tait et al. 1995). In decision-making 

methods, quantifiable measures and categorical features for a given ore deposit can be 

used, which can include mining-geological, mining-technical and economic factors of the 

exploitation of the ore deposit (Bogdanovic et al. 2012). Regarding this class of methods, 

there are numerous papers on the topic of mining method selection (MMS), however sev-

eral authors have extensively researched this field, many of which have successfully 

used multi-criteria decision-making (MCDM) methods in the context of MMS (Mijalkov-

ski et al. 2012a; 2012b; 2021a; 2021b; 2021c; 2022a; 2022b; 2022c; 2023a; 2023b; 2023c; 

Balusa and Gorai 2018; 2019a; 2019b; Bakhtavar et al. 2009a; 2009b; Ataei et al. 

2008a; 2008b; Alpay and Yavuz 2007; 2009). 

Apart from these three classical approaches used for solving the MMS problem, the 

emerging application of supervised and unsupervised machine learning models in the 

field of mining engineering has led us to believe that certain well-established selection 

procedures can be re-evaluated. Moreover, this new paradigm has provided ways of 

establishing an improved understanding of different rules-of-thumb and has led to the 

adoption of novel approaches to decision-making in traditional mining engineering 

problems, e.g., underground MMS (Abdelrasoul et al. 2022), surface MMS (Gomaa et al. 

2021), slope design (Ragam et al. 2024), stope design (Mortazavi and Osserbay 2021), 

etc. Thus, this paper aims to explore novel ways of integrating unsupervised machine 

learning for decision-support in relation to the underground MMS process. 

2. METHODOLOGY 

2.1. INTERPRETING ESTABLISHED MULTI-CRITERIA DECISION-MAKING METHODOLOGIES 

AS DOMAIN-BASED DIMENSIONALITY REDUCTION TECHNIQUES 

Apart from the traditionally used parallel coordinates plot in engineering design, mod-

ern decision-support methods often employ unsupervised machine learning techniques 

– dimensionality reduction, clustering or a suitable combination of both (Bogdanovic 

et al. 2012; Harding 2016; Nanga et al. 2021; Chen and Geyer 2023; Zangada and 
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Abdulazeez 2023; Cámara et al. 2023). The purpose of using these methods is to reduce 

a high-dimensional problem to a less computationally intensive or human-interpretable 

lower-dimensional representation with minimal information loss. This can involve pre-

serving the total inertia of the point cloud or maintaining the local and global structures 

that define the relative positions of sample vectors. Although classical multi-criteria 

decision-making (MCDM) methods do not explicitly aim to preserve spatial structures 

among solution vectors, they can still be considered a viable means of reducing the 

multidimensional space of the adopted criteria to a set of easily comparable composite 

scalar values. In the context of mining engineering, several of the most prominent 

MCDM procedures used for the selection of a mining method are: TOPSIS, VIKOR, 

EDAS, PROMETHEE and AHP. Each of the mentioned MCDM procedures aims to 

reduce the dimensionality of the decision problem from a feature space of the assumed 

quantitative values to 1D space using scalars or ranks. This provides a general level of 

understanding of the overall feasibility of employing each mining method under the 

evaluated conditions, regardless of whether the method is based on distance measures 

in ℝⁿ, a certain level of compromise, or applying averaging or more advanced prefer-

ence functions. Hence, the above-mentioned MCDM methodologies can be regarded 

as a domain-specific way of mapping the decision variables to a set of real or discrete 

values for all considered mining methods. However, the results from these mappings 

for different MCDM methodologies may not always be coherent with one another, as 

shown in prior studies (Mijalkovski et al., 2021c). In such cases, the question arises as 

to whether accurately ordering the solutions is feasible at such an early stage, or 

whether the notion of ordering is applicable at all, suggesting that considering sets of 

solutions may be more appropriate. This leads to the discussion of some important 

issues related to MCDM procedures, as well as first-pass selection methodologies 

before introducing the proposed framework.  

2.2. POTENTIAL SHORTCOMINGS IN THE PROCESS OF MINING METHOD SELECTION 

MCDM methods are often used to evaluate mining method alternatives, even with lim-

ited or potentially biased data. As these methods can oversimplify the complex interde-

pendencies of geological, technical, and economic factors, this could potentially lead to 

flawed or ambiguous results. A more accurate assessment and ranking of the methods 

considered can emerge only at the pre-feasibility stage, where several alternatives are 

analyzed in detail. Despite using established selection procedures, tied or similar scores 

can be common. Additionally, if certain criteria are excluded, this may result in sub- 

-optimal decisions due to neglecting future-relevant criteria.  

Reaching similar total scores or tied values for different mining methods can be 

a result of several key reasons. One major reason is related to the ambiguity of the 

geological and geotechnical conditions of the deposit, which may facilitate the feasible 

use of more than one mining method. As a result, the selection process is not trivial. 
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An important reason why some solutions are ambiguous derives from the variability of 

the geological and geotechnical data, especially in cases when there is substantial var-

iance, or their respective distributions are multimodal. In these cases, the traditionally 

used central tendency measures (mean and median) may not be sufficient to be used as 

a single value input for the MMS procedure. The same logic holds for the derivation 

of overall technical and economic parameters for each mining method in the context 

of the whole deposit, rather than for certain domains. In such cases, a good alternative 

would be the separate evaluation of each ore body, or similarly, each geotechnical 

domain. 

Even if we assume that the precision and accuracy problem regarding the score values 

and their weights is mitigated or representative values for each ore body and geotech-

nical domain are used as proper input values, the resultant solution can still imply that 

more than one mining method is feasible. One approach to resolve these conflicts is by 

applying different selection methodologies for providing additional arguments in sup-

port of or against each mining method, i.e. summing or averaging rank values from a set 

of selection procedures, fuzzy dominance, etc. Indeed, these approaches have been 

successfully applied in the past to resolve conflicts and to select a single mining meth-

od. However, another question can arise – what if the apparent conflict is an indicator 

that a combination of the conflicting methods would be a feasible solution? Such an 

untraditional approach for resolving conflicting strategies is similar to the one used in 

Game theory, where the player can employ mixed strategies, rather than relying on pure 

ones (assuming the payoffs reflect rational and transitive preferences) (Nash 1951). So 

far, no traditional MMS procedure provides a framework for yielding a “mixed strategy”, 

i.e. a combination of the considered mining methods (pure strategies). One reason 

behind this is because there is an inherent ambiguity whether such a combination re-

fers to the transition between the considered methods in time domain (during the life 

of mine), in spatial domain (for the multitude of ore bodies or the set of geological and 

geotechnical domains), or in both. Moreover, certain combinations of mining methods 

may be incompatible, which leads to their careful consideration before accepting 

them. 

Finally, a fundamental shortcoming of the above-mentioned selection procedures 

and MCDM methods is that although they achieve dimensionality reduction based on 

domain knowledge, they do not provide a quantifiable measure for information loss.  

2.3. EXPANDING THE PROCESS FOR INITIAL MINING METHOD SELECTION 

BASED ON HIERARCHICAL CLUSTERING (HC) AND CORRESPONDENCE ANALYSIS (CA) 

Hence, in this paper we aim to introduce a new formal approach to the MMS process, 

which addresses the issues related to the ambiguity of MCDM solutions order and the 

lack of measure for information loss. An unsupervised machine learning approach was 

applied, based on the joint application of clustering and dimensionality reduction with 
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few arbitrary assumptions. By analyzing the correspondence between the resulting 

solutions from each selection methodology, one can take into consideration different 

sets of similarly rated mining methods (pairs, triplets, etc.), which can initially be in-

terpreted as conflicts. These conflicts can be resolved either during the first-pass ap-

proach or during the sequential design stages of the project, when additional data of 

their overall performance can lead to their easier distinguishment. The level of conflict 

between two solutions can be established via an arbitrary distance measure between 

the two mining methods in the vector space of an arbitrary set of input features or 

selection criteria. Traditionally, differences between total score values from each MMS 

procedure (first-pass and MCDM) are unintentionally regarded as distance measures, 

as they are essentially scalar values. However, additional distance measures (Cosine, 

Kendall and Spearman) can be considered for analysis based on the initial input matrix 

of first-pass or MCDM methods (prior to the MCDM estimation process), or a matrix 

based on all composite MCDM scores (after their implementation). In the case of first-

pass methods such as the UBC and Nicholas selection procedures, the input matrix can 

consist of the score reference matrix for the geological and geotechnical conditions for 

the considered mining methods. Alternatively, in the case of MCDM procedures, the 

input matrices consist of the values of the criteria considered for the decision-making 

process (ore losses, ore dilution, OHS conditions, environmental considerations, etc.). 

As discussed, after the implementation of all adopted MCDM methods, a matrix, con-

sisting of all derived scores for each mining method, can also be subjected to HC. The 

choice of whether each MCDM composite score should be regarded as an independent 

distance measure or jointly with the other ones is to some extent arbitrary. If the for-

mer approach is applied, however, only the Euclidean (which coincides with the Man-

hattan distance) can be successfully applied for the individual scalar MCDM scores. 

Hence, this paper adopts the latter approach (using the overall results matrix of com-

posite MCDM scores) so as to utilize additional unconventional distance measures 

(Cosine, Spearman and Kendall distance). In this case it is crucial to apply normaliza-

tion prior to subjecting the data to HC.  

For the application of additional distance measures, primarily ones which are typical-

ly used in HC, can be suitable for the purpose – Euclidean distance, Manhattan distance, 

Cosine distance, Spearman correlation distance and the Kendall correlation distance. All 

mentioned distance measures provide different perspectives on the nature of the simi-

larities. In terms of an unsupervised learning problem, these distance measures aim to 

establish a better understanding of the additional properties which were not initially 

taken into consideration during the MCDM or initial selection procedure, although 

they emerge from the same input model. Hence, the employment of these additional 

distance measures can be considered a necessary extension and a novel way of identi-

fying and resolving conflicting solutions. In addition, HC is complemented by visuali-

zation tools using dendrograms or cluster maps (a combination of a heatmap and den-

drogram).  
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As the primary purpose of HC is to identify notable and consistent similarities be-

tween the considered mining methods, a higher or lower sensitivity for detecting cer-

tain conflicts between the solutions depends on the linkage method between the clus-

ters (Aggarwal 2016). For this case study three linkage methods were chosen for 

establishing the distances between the considered mining methods and their respective 

cluster formations in the multidimensional space of the selected criteria – Single link-

age, Complete linkage and Average linkage. Undoubtedly, a major aspect of HC is the 

assumption of a suitable combination between distance measure and linkage method 

(Aggarwal 2016; Manly and Navarro Alberto 2017). Their choice can indeed be arbi-

trary, moreover, it can have a significant impact on the detection of potential conflict-

ing solutions. Therefore, in order to simplify matters, a general arbitrary similarity 

threshold value can be used for achieving better control of the results, regardless of 

distance measure or linkage method. It serves as a cut-off value for rejecting or accept-

ing conflicts which need to be resolved at the next stage of the project. Depending on 

the assumed threshold value and the number of times each cluster does not violate it, 

the number of these occurrences can be considered as an indicator of a conflict worth 

investigating. This procedure can be repeated for all dendrograms, followed by assign-

ing the total number of each conflict’s occurrences to a contingency table, depending 

on which first-pass or MCDM input matrix was used. Indeed, a Multiple correspond-

ence analysis can also be used, however, in this case study it yielded a small amount 

of explainability (below 50% of the total inertia) with respect to deriving two or three 

major components in the analyzed feature space of the categorical values. The reason 

behind the use of a single CA is that both the assumed distance measures and linkage 

methods, as well as their contribution to the final number of occurrences for each con-

flict, are assumed to be equally important. Hence, these two categories were binned 

for each first-pass and MCDM input matrix, which was considered as the primary 

categorical variable of interest. Therefore, HC can be considered as a preprocessing  

 

 

Fig. 1. Assumed methodology, implementing Hierarchical clustering 

and Correspondence analysis  
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tool, which aims to detect certain conflicts which were not initially detected but re-

main consistent regardless of the choice of selection procedure or MCDM method. 

In cases where clusters of three or more mining methods emerge, their lower rank 

interactions are also included into the contingency table, following the hierarchy of 

their  agglomeration. Last but not least, the order of mining methods for each cluster is 

disregarded and hence, each cluster is represented as an unordered collection, i.e., a set. 

A full representation of the adopted methodology can be seen in Fig. 1. 

3. CASE STUDY 

For the current case study, a Pb-Zn deposit is taken as an example for demonstrating the 

proposed framework using data from prior papers (Mijalkovski et al. 2021a; 2021c). 

The input data for the key geological and geotechnical features were taken from previous 

papers on the topic, used for estimating the Nicholas and UBC score values (Mijalkovski 

et al. 2022b; 2022c). The deposit at hand was also previously evaluated using different 

MCDM approaches – TOPSIS (Mijalkovski et al. 2022a), VIKOR (Mijalkovski et al. 

2021b), EDAS (Mijalkovski et al. 2023a), PROMETHEE II (Mijalkovski et al. 2021a), 

AHP and AHP-PROMETHEE (Mijalkovski et al. 2021c), FUZZY TOPSIS (Mijalkov-

ski et al. 2023c). Although these procedures rely on the same selection criteria (value 

of mined ore, OHS conditions, coefficient of preparation works, ore recovery, ore 

dilution, cost per ton of ore, effect of mining, terrain degradation and environmental 

impact) and similar weights, they have yielded different solution orders, which need to 

be taken into consideration for the final decision of what mining method is more suit-

able for the deposit at hand. The pre-feasibility study of the deposit focuses on four 

primary methods – Cut-and-fill stoping (CFS), Shrinkage stoping (ShS), Sublevel 

caving (SlC) and Sublevel stoping (SlS).  

The similarity threshold value was assumed to be 0.75, which implies that if the 

distance between two clusters does not exceed 25% of the maximum linkage distance 

for the evaluated dendrogram, the two clusters are agglomerated. As mentioned above, 

these clusters of mining methods are regarded as conflicting solutions worthy of fur-

ther investigation at a later stage of the project to select a single method or their poten-

tial combination. Taking into consideration each method’s number of occurrences for 

each combination of considered distance measures and linkage methods leads to the 

implementation of CA. Hence, the co-occurring conflicting methods, which consist-

ently emerge during this stage of the analysis, are regarded as the ones the design 

stage should focus on more thoroughly.  

In the first case, where the first-pass approaches are considered along with the MCDM 

procedures, the first two out of four components contribute to explaining 91.90% of the 

total inertia. Nicholas, UBC and the Overall scores matrix are on opposite sides in the 

feature space, which is due to their different set of assumptions. Hence Component 1 
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can be used to distinguish the conflicts obtained by the input matrix of the Nicholas 

selection process from the other ones. Additionally, it can also be interpreted as the 

axis separating two fundamentally different approaches – focusing on mass mining 

methods versus focusing on more environmentally friendly ones. Component 2, on the 

other hand, distinguished the results obtained by the Overall score matrix (based on 

MCDM results) from all MCDM input matrices, including the UBC first-pass selec-

tion matrix. Hence, both approaches can also lead to fundamentally different conclu-

sions. 

Given that the first-pass selection procedure matrices are excluded from the analy-

sis and results deriving only from the MCDM methods are considered instead of the 

overall result matrix, the first two out of three components in the embedded space 

contribute to explaining 97.46% of the total inertia. Component 1 in this case corre-

sponds with Component 2 in the left-hand graph, as the order of the points represent-

ing the input matrices remains unchanged for this axis in the lower-dimension repre-

sentation. Figure 2 shows the established representations of all consistent co-occurring 

mining methods (i.e. conflicts) in the embedded space. 

 

Fig. 2. Correspondence analysis of mining method selection methodologies 

and their respective co-occurring conflicting mining method solutions. 

Left-hand graph – MCDM and first-pass results, Right-hand graph – only MCDM results  

Should a different similarity threshold value be adopted, minor changes can be ob-

served in the relative positions of the points in the embedded space. The major differ-

ence which occurs is that certain additional clusters would appear or disappear when 

testing out different threshold values. Hence, the joint use of HC and CA can be relia-

ble as the results are consistent in terms of their interpretation.  

Finally, if all points of view are considered – the use of the input matrices prior to and 

after applying each MCDM method (with or without the first-pass selection methods), the 
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conflict sets which prove to be the most prominent and require to be further analyzed 

in the sequential design stage are: {CFS, ShS}, {ShS, SlS} and {CFS, ShS, SlS}. Ap-

plying the assumed methodology and threshold value has successfully led to the elim-

ination of conflicts with the SlC method in this stage. Additionally, during the next 

stage of the design process the above-mentioned mining methods need to be thorough-

ly evaluated so as to provide more accurate evidence for their segregation. In addition, 

a potential combination of these mining methods may also have to be evaluated for 

investigating the feasibility of combining them in spatio-temporal domain. 

4. DISCUSSION AND FUTURE WORK 

As shown, the proposed HC-CA framework to some extent resembles the complemen-

tary Geometrical Analysis for Interactive Aid (GAIA) for PROMETHEE (Bogdanovic 

et al. 2012). This is due to successfully reducing the dimensionality of the problem 

with negligible information loss, as GAIA is based on PCA in the context of criteria 

and the features of design alternatives. While GAIA serves to identify the level of 

conflict or agreement between criteria, as well as clusters of similar alternatives in the 

embedded space, the HC-CA approach addresses all conflicts in the original high di-

mensional space before applying dimensionality reduction. Moreover, the HC-CA 

approach explores the level of coherence between the results obtained from different 

MCDM and first-pass selection approaches for the sake of generalization and better 

decision support. Additionally, subjecting the input matrices to the proposed frame-

work prior to and after using different MCDM methods is also compared in terms of 

the similarity of the yielded results. 

A notable drawback, however, of using this framework is that the ability to identify 

potential conflicts is based primarily on hyperparameters (an arbitrary set of distance 

measures, linkage methods and accepted threshold value), rather than strict domain 

expertise. As this approach aims to aid the engineer at an early stage of the project, there 

is a possibility for some conflicts to be falsely discarded. Hence, this requires further 

investigation. However, similar to other problems based on unsupervised machine learn-

ing, one can easily find the most practically meaningful results through a trial-and-error 

process. Therefore, this allows for testing out different threshold values and pairs of 

distance measures and linkage methods, as well as input matrices of different MCDM 

approaches. Regardless, the proposed modelling framework can be utilized for an arbi-

trary set of MMS procedures and an arbitrary set of suitable mining method alternatives. 

However, in cases where several hundreds or thousands of features are used, the HC-CA 

approach would lose its power due to the “curse of dimensionality”. As the approach 

estimates distances between different alternatives in the original feature space, in such 

cases their values would no longer provide practical meaning. In these extreme cases, 

dimensionality reduction would be required, prior to clustering and applying CA. 
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Another drawback of the proposed modeling framework is that it is entirely depend-

ent on the accuracy of the values provided by the matrices from the first-pass approach-

es, as well as the input scores and weights in different MCDM procedures. Hence, as 

flexible as this framework may be, it is also prone to subjectivity, similar to other de-

cision-making methods. Last but not least, given that the proposed framework sug-

gests that a mining method should be excluded from the set of consistently co-

occurring conflicting mining methods, it does not provide an answer whether it is in-

herently more efficient or profitable than the other ones. Rather, it is expected that its 

overall performance would be significantly different from the conflicting ones. Re-

gardless, this paper demonstrates a way to establish similarities between the results of 

the assumed selection methodologies when the order of solutions based on rank is 

ambiguous. In addition, the HC-CA approach can be further used to determine wheth-

er certain first-pass or MCDM methodologies are biased towards a certain set of solu-

tions or if they reach the same conclusions independently.  

In terms of future work, the proposed unsupervised machine learning framework 

could be extended to a supervised one. This would allow for reconciling the reliability 

of each first-pass or MCDM approach with respect to the solutions obtained in the later 

stages of the mining project. Moreover, additional performance measures (e.g., accura-

cy, precision, recall and specificity) of different first-pass selection approaches and 

MCDM procedures can be established to gain a better understanding of their capabil-

ity with respect to different types of deposits. 

5. CONCLUSION 

This study proposes a novel methodological framework that integrates Hierarchical 

Clustering (HC) and Correspondence Analysis (CA) to support early-stage underground 

mining method selection. While traditional multi-criteria decision-making (MCDM) tech-

niques such as AHP, PROMETHEE, TOPSIS, and VIKOR offer scalarization-based rank-

ing of alternatives, the proposed HC-CA framework further utilizes these outputs through 

the lens of unsupervised machine learning. By treating each MCDM procedure as 

a form of domain-specific dimensionality reduction, the framework enables the system-

atic exploration of the structural relationships among mining method alternatives, cap-

turing consistent patterns across different assumptions, expressed through multiple 

input matrices and MCDM results. 

Applied to a platy-tabular Pb-Zn deposit, the HC-CA approach aided in identifying 

several mining methods as consistently conflicting with one another, most notably 

Cut-and-Fill Stoping (CFS), Shrinkage Stoping (ShS), and Sublevel Stoping (SlS). More-

over, the proposed framework demonstrated the stronger alignment of the UBC first-

pass method with the assumptions used for the MCDM inputs and their results, in 

contrast to the Nicholas approach. These findings underline the framework’s potential 
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to support more nuanced and interpretable decision-making, especially in contexts 

where traditional and MCMD selection methods yield ambiguous outcomes. 

Future research should assess the framework’s generalizability across various deposit 

types, testing its capability in different geological and operational contexts via a super-

vised machine learning approach, where results from subsequent design stages can be 

evaluated against each other.  

To conclude, the HC-CA framework complements MCDM-based methodologies 

by providing a flexible tool for better-informed decision-making in complex under-

ground mining conditions. 
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