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Abstract: The study examines the impact of precipitation on the distribution of apparent specific electrical
resistivity (pa) in the soil through statistical analysis of data measured in a direct current geoelectric Dipole-
Dipole (DPDP) electrode array in the park of the University of Miskolc, on an artificially constructed area.
Following data filtering, regression analysis (Montgomery et al., 2012) and analysis of variance (ANOVA)
(Montgomery, 2012; Kim, 2014) were applied to investigate the relationship between precipitation and pa.
Separate analyses were conducted for each measured depth level as a function of the precipitation amount
recorded over the three months prior to the geoelectric measurements. The combined application of statis-
tical methods provides an effective tool for understanding the hydrogeological state of the soil and the
dynamics of subsurface water movement, while considering the influence of environmental factors and
human activity. The results of the study may be valuable for interpreting data provided by monitoring sys-
tems and for shallow geophysical investigations aimed at mapping the hydrogeological functioning of an
area.
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1. INTRODUCTION

In geophysical engineering the first decision is always finding the best appliable,
and most economical method to the given problem. These methods rely on different
physical phenomena that have their own limitations. The uncertainties discussed in this
study is the direct current geoelectrical monitoring method, or ERT as commonly refer-
enced. Since the method works with current injected to the subsurface, precipitation is
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a key question that needs to be examined. The study aims to approach a rather unprec-
edented methodology: applying statistical evaluation to raw measured monitoring data,
from repeated measurements through a four years window. Statistical processing and
interpretation of geoelectric data are advantageous in shallow geophysical investiga-
tions, as they enable a more complex yet reliable examination of subsurface structures.
One of the most critical practices following measurements is the identification and han-
dling of erroneous or outlier data, which may arise from noisy environments or meas-
urement errors. Filtering such data is essential, as they can significantly distort inverted
images (Isaaks et al., 1989). Although there are inversion solutions, such as those using
the L1 norm (the sum of the absolute values of a vector's components), which is less
sensitive to outliers, the study only works with p, datasets, therefore manual data filter-
ing had to be applied to the geoelectric data to eliminate unrealistically high values
clearly resulting from measurement errors. The measurements were conducted in the
park of the University of Miskolc under varying precipitation conditions and with mon-
itored meteorological histories. Polynomial regression analysis (Montgomery et al.,
2012) was performed to explore potential relationships between precipitation and pa.
The measurements aimed to observe the effect of precipitation on the geoelectric resis-
tivity of the soil, considering the geological characteristics of the profile. The investi-
gated area was dominated by valley-foot debris prior to filling, upon which construction
debris was deposited in multiple layers of varying thickness decades ago, followed by
a cover of locally available clayey soil several tens of centimetres thick. These layers,
mixed with significant clay content, behave as good electrical conductors. As expected,
specific resistivity decreases under wet conditions, while an increase in resistivity is
observed during dry periods. At the outset of the measurements, a key question was to
determine the depth to which geoelectric monitoring could detect the effects of wet and
dry periods in the given area. This behaviour is closely related to the soil's properties,
such as its water-holding capacity and the presence of dissociated ions in the pore space.
Different soils and rocks respond uniquely to various weather conditions (Cheban et al.,
2014). The selected study area at the University of Miskolc represents a transition be-
tween low- and high-permeability soils. The results indicate a slight negative correlation
between precipitation and p.. The low slope of the polynomial regression models sug-
gests that increased precipitation causes only minor changes in the pa values of the mid-
dle and deeper soil layers, consistent with the soil's clay content and the conductivity of
near-surface layers. By exploring the relationships between changes in the water bal-
ance and electrical conductivity, more accurate conclusions can be drawn about the ar-
ea’s moisture content and the dynamics of subsurface water movement. It is important
to note that geoelectric measurement results are influenced not only by precipitation but
also by other environmental factors, such as temperature, vegetation, or the degree of
anthropogenic disturbance. The findings of this study also highlight the extent to which
changes in environmental parameters can affect measured resistivity values. This is par-
ticularly significant for the design of monitoring systems aimed at accurately tracking
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long-term changes. The research focused on analysing measured DPDP data and pre-
cipitation conditions using two-way ANOVA and polynomial regression. The study ex-
clusively utilized p, data, and inversion results are not discussed in this manuscript.
Based on the findings, the combined use of statistical analyses suggests a simple yet
potentially effective tool for monitoring the hydrodynamic state of the soil, which may
prove useful in future shallow geophysical investigations.

1.1. LITERATURE REVIEW

Long-term multielectrode geoelectric monitoring with fixed electrical resistivity to-
mography (ERT) arrays has proven highly effective for quantifying the influence of
precipitation on subsurface apparent resistivity and soil moisture over extended periods,
revealing both rapid event-scale responses and gradual multi-annual trends (Whiteley
et al., 2019; Hojat et al., 2022). In Vertisols, for example, seasonal wetting—drying cy-
cles driven by cumulative rainfall produce resistivity variations exceeding one order of
magnitude (10-500 Qm to <50 Qm), with the most dramatic decreases occurring during
the first major rainfalls after prolonged dry periods when desiccation cracks facilitate
rapid infiltration (Amidu and Dunbar, 2007). Permanent ERT installations on landslide-
prone slopes consistently record sharp resistivity reductions of 30—70 % in the upper 5—
15 m within 12—72 hours of intense precipitation (>20-50 mm/day), often followed by
partial recovery over weeks as drainage occurs; these transient low-resistivity zones di-
rectly precede measurable displacement in many cases, underlining the value of geoe-
lectric monitoring for early-warning systems (Supper et al., 2014; Palis et al., 2017,
Uhlemann et al., 2017). Depth-dependent behaviour is a recurrent observation: near-
surface pseudosections (0—3 m) typically show high-amplitude, short-term fluctuations
tightly coupled to individual rainfall events, whereas deeper levels (8—-20 m) exhibit
damped, lagged responses or even inverse trends controlled by capillary rise, matrix
flow, or redistribution through permeable layers (Carriere et al., 2013; Zhao et al., 2020;
Scaini et al., 2021). In a loess landslide, Zhao et al. (2020) documented downward mi-
gration rates of low-resistivity fronts of approximately 0.3—-0.8 m/day following heavy
rain, while Watlet et al. (2018) tracked focused infiltration along karst conduits that
remained active for up to 40 days after rainfall ceased, generating localised resistivity
anomalies <10 Qm that propagated from the surface to cave systems at depths of 30-50
m. Agricultural and hillslope studies further illustrate the dominance of cumulative an-
nual precipitation on bulk resistivity, with sites receiving >800 mm/year showing sus-
tained low-resistivity periods throughout the wet season, whereas calcic horizons or
clay-enriched layers act as effective barriers that restrict deep percolation and maintain
elevated moisture (and thus lower resistivity) in the overlying vadose zone for months
(Kotta et al., 2020; Scaini et al., 2021). Time-lapse inversion results frequently report
seasonal true-resistivity contrasts of 200-300 % between dry and wet states, yet most
published works rely on visual comparison of inverted tomograms, percentage-change
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maps, or simple linear correlation with rainfall totals rather than formal statistical mod-
elling of the apparent resistivity time series itself (Brunet et al., 2010; Hojat et al., 2022).
Quantitative petrophysical conversion using Archie’s or Waxman-Smits models is oc-
casionally applied, but calibration is challenging in heterogeneous soils and often lim-
ited to point-scale neutron probe or TDR validation (Scaini et al., 2021). Consequently,
while inversion-based 4D-ERT provides spatially distributed images of moisture evo-
lution, the direct statistical treatment of long-term apparent resistivity data—particularly
when stratified by investigation depth—remains relatively scarce.

The approach of applying polynomial regression and variance analysis directly to
multi-year sequences of apparent resistivity values extracted at discrete depth levels of-
fers a robust, inversion-independent framework that explicitly quantifies the magnitude,
nonlinearity, and statistical significance of precipitation effects across the subsurface
profile. Compared to the predominantly qualitative or inversion-centred methodologies
that dominate the literature (e.g., Supper et al., 2014; Uhlemann et al., 2017; Whiteley
et al., 2019), this statistically driven analysis of raw apparent resistivity data provides a
lightweight yet rigorous complement capable of detecting subtle depth-specific trends
and threshold behaviours that may be obscured by inversion artefacts or smoothing con-
straints, thereby enhancing the interpretive power of permanent geoelectric monitoring
arrays for hydrological and geotechnical applications.

2. MATERIALS AND METHODS

2.1. THE ERT METHOD

Geoelectric methods are the second most widely used geophysical techniques after
seismic methods, applied extensively in solving hydrogeological, environmental, engi-
neering geological, and archaeological problems. Their popularity stems from their
broad applicability. Direct current geoelectric methods are primarily used for shallow
investigations (penetrating a few hundred meters). Their operating principle involves
injecting current into the ground through electrodes A and B, while measuring the po-
tential difference between measuring electrodes M and N. In specific cases, three- or
two-electrode configurations or focusing arrangements are also employed. The meas-
ured data, pa reflects the average properties of the rock surrounding the electrode ar-
rangement. In this study, the DPDP electrode configuration was used due to its excellent
horizontal sensitivity. Nowadays, measurements are often conducted using multielec-
trode systems (Figure 1.), where a computer controls the operation of current and po-
tential electrodes.
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Fig. 1. lllustration of direct current multielectrode ERT measurement with DPDP array (Szalai, 2020)

During two-dimensional (2D) measurements, electrodes are placed in a line at fixed
intervals, enabling simultaneous investigation of vertical and horizontal variations in
specific resistivity. The measured data can be converted into true specific resistivity
using inversion techniques, achieved by iteratively refining an initial model to minimize
the discrepancy between measured and calculated data. Due to the indirect nature of
geoelectric data, the profile must be interpreted in the context of geological conditions.

2.2. THE STUDY AREA PARAMETERS

In Table 1 the lithological and geoelectric parameters can be seen of the study area.
The campus of the University of Miskolc was a marshland in the past, before the gov-
ernment built the university, the area was drained and filled up with construction debris.
The thickness and composition of this compacted debris changes everywhere, but the
layers were examined in a waterpipe trench near to the geoelectric sections, giving reli-
able information for the measurement. Though the permeability and porosity varies
greatly in this layer, it is expected that precipitation induced geoelectrical response
change is measurable to at least a certain depth. The undermost layer serves as a water
basin in the valley, collecting the waters from the sides, with very low permeability.

Table 1. Calculated parameters in representative depths

Lithology Depth Porosity | Permeability pa
[m] [%] [mD] Q]
Clayey soil 0-0.25 25 100 5-15
Compacted construction debris (inhomogenous) | 0.25-3 15-40 10-100 200
Weathered andesite tuff /compact clayey soil 3- 2-8 0.1 500
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2.3. THE APPLIED STATISTICAL METHODS

The application of statistical methods in processing geophysical data is highly effec-
tive for uncovering the structure, relationships, and reliability of measured data. In the
analysis of geoelectric measurements, detailed statistical evaluation enables the explo-
ration of temporal changes in the electrical properties of the soil and the quantification
of the impact of precipitation conditions. In this study, descriptive statistical measures
were used to determine the fundamental characteristics of the dataset. These include the
correlation analysis, regression analysis, and variance analysis. Interquartile range
(IQR) was used to quantify the distribution characteristics of the variables. These
measures provide a statistical summary of the data and facilitate the identification of
potential anomalies or outliers. Correlation analysis examines the strength and direction
of relationships between different measurement parameters. Regression analysis ena-
bles the prediction of a dependent variable (e.g., p.) based on one or more independent
parameters (e.g., precipitation amount). In addition to linear regression, the method can
be extended to multivariate models to uncover more complex relationships. The param-
eters of the regression model, such as the slope (beta) and the goodness of fit (R?), pro-
vide a more precise understanding of these relationships. Analysis of variance
(ANOVA) is used to investigate significant differences between the means of multiple
groups. This method is particularly useful for comparing measurements taken at differ-
ent time points, such as evaluating differences in specific resistivity values measured
across different years, while still considering the precipitation. Based on the F-statistic
and its associated p-value, it can be determined whether the differences are statistically
significant or the result of random fluctuations. The statistical analyses performed pro-
vide a robust foundation for interpreting the measured data. These geostatistical tools
enabled a detailed analysis of the impact of precipitation, the identification of anoma-
lies, and the evaluation of the significance of differences in specific resistivity values
measured across different periods. The results contribute to a better understanding of
subsurface processes and the further development of monitoring systems in the field of
shallow geophysical investigations.

2.4. DATAFILTERING

During the data filtering process, the pa values of the geoelectric DPDP data were
examined, and erroneous or outlier values were filtered out from the dataset. The initial
step involved a visual inspection of the data using boxplot visualization. The boxplot
enabled rapid identification of the data distribution and any extreme values. In the next
step, outliers were filtered using the IQR based on quartiles. The lower boundary is
calculated by Q1-1.5xIQR, while the upper boundary is given by Q3+1.5xIQR. Addi-
tionally, manual constraints were applied to the p. values to prevent unrealistically high
values from distorting the analyses. The upper limit was set at 5000 Qm, and the lower
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limit at -5000 Qm, because from experience it is known, that these values are the real-
istic measured limits with the method, values exceeding these limits are usually meas-
urement errors. ldentified outliers were replaced using linear interpolation. The quality
of the measurement was good, with less than 3% of the points removed and reinterpo-
lated. During interpolation, values were recalculated based on neighbouring data points,
ensuring the continuity of the dataset while preventing extreme values from further dis-
torting the analysis. The proportion of outliers was quantified and examined using a
representativeness factor, expressed as a percentage, but not displayed in this study.
Given the test area has a rather simple layer structure, and free of unknown anomalies,
there was no risk of removing the outliers. The complete data cleaning process improved
the reliability of the dataset by removing erroneous values, thereby minimizing their
distorting effects. The executed data cleaning process provided a stable foundation for
the statistical analyses conducted in subsequent stages.

3. RESULTS

3.1. REGRESSION ANALYSIS OF PRECIPITATION ON ARS

To investigate the joint changing of p. and precipitation, several curve fitting meth-
ods were tried, and finally second degree polynomial regression analyses was chosen to
be showcased. Figure 2. illustrates the relationship between precipitation amount (mm)
and pa at the representative depth of 25 cm. Due to constraints, we only subject to dis-
play the depth level, in which the correlation is the strongest. In the analysis, second-
degree polynomial regression fit (calculated curve) was applied to describe the nonlin-
ear changes occurring with increasing precipitation. The results in Figure 2. reveals a
nonlinear inverse relationship between p. and precipitation, averaged over the preceding
four months, with data points clustered by measurement dates from 2019 to 2024. The
fitted curve exhibits a hyperbolic decay, where higher precipitation levels correspond to
markedly lower apparent resistivity values, approaching asymptotic behaviour near pa
~ 10-20 Qm for precipitation exceeding 30 mm, while drier conditions (precipitation <
10 mm) yield elevated resistivity up to 50 Qm. This pattern indicates soil moisture sat-
uration effects in the near-surface layer. In the context of the site's hydrogeological set-
ting -an artificially infilled marshland comprising construction debris and clay-rich soils
within a drainage basin- the observed resistivity reduction with increased precipitation
reflects enhanced electrolytic conduction due to pore water infiltration, albeit moderated
by the low permeability of clay matrices that promote surface runoff and lateral drainage
via engineered channels to an adjacent river. The quadratic curvature suggests a thresh-
old-driven response: initial precipitation increments rapidly decrease resistivity through
partial wetting of heterogeneous fill materials, but further inputs lead to diminished mar-
ginal effects as the soil approaches hydraulic saturation, with persistent groundwater
presence facilitating capillary rise and maintaining baseline conductivity even during
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low-precipitation periods; this implies seasonal recharge dynamics where episodic
heavy rains in wetter years (e.g., 2020-2021) overwhelm drainage capacity, potentially
exacerbating localized waterlogging in the debris-laden subsurface, while prolonged dry
spells in 2024 elevate resistivity through desiccation cracking in clays, thereby influ-
encing aquifer vulnerability to contamination transport along preferential flow paths.

Polynomial Regression (degree: 2): Apparent Resistivity vs Precipitation (depth: 0.25)
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Fig. 2. Polynomial regression graph of the DPDP data, 25cm penetration depth

3.2. CORRELATION ANALYSIS

Across the entire depth range, it can generally be concluded that the average corre-
lation is weakly negative, with its minimum at 3.75 m depth (strongest negative rela-
tionship) and maximum at 6.5 m (strongest positive relationship). Based on R?, the
model fit is weak, with the best fit occurring at 7.25 m depth. The average MSE is 27.87,
with the highest error at 0.375 m depth. The correlation exhibits a slightly positive re-
lationship with depth (correlation: 0.28). This indicates that in shallow layers (0-4 m),
negative correlation is more prevalent (increased precipitation reduces resistivity, e.g.,
due to soil moisture), but it weakens with depth and occasionally becomes positive. The
most negative range is around 3-4 m (-0.17 to -0.20). A weak negative relationship ex-
ists with depth (-0.18). The fit is generally weak (R? ~0 or negative), but improves at
some deeper points (e.g., 7.25m: 0.44; 7.5m: 0.37). This suggests that the polynomial
model may better capture nonlinear relationships in deeper layers. A strong negative
relationship (-0.73) is observed. The error decreases drastically with increasing depth:
high in shallow layers (e.g., 0-1m: =76), low in deeper ones (e.g., 5-6 m: =4-5). This
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may indicate greater variability in shallow layers (e.g., due to meteorological effects),
whereas values are more stable at greater depths. Table 2 lists the main calculated pa-
rameters of correlation and error of model, in the three main depth domains, two levels
for each domain.

Table 2. Calculated parameters in representative depths

Depth (m) Correlation R? MSE
0.25 -0.13 0.08 83.36
0.5 -0.08 0.21 82.26
3.0 0.08 -0.02 37.87
4.0 -0.16 -0.00 22.89

5.125 -0.00 0.01 5.12
6.875 -0.06 -0.16 8.02

3.3. PHYSICAL ASSUMPTIONS

Based on site-specific insights, the clay-dominated soil exhibits strong electrical
conductivity due to abundant free ions on particle surfaces, with resistivity further de-
clining in moist conditions as pore water enhances electrolytic pathways. Dry periods
induce only modest resistivity increases while maintaining overall low values, aligning
with the expected gentle negative regression slope in shallow subsurface zones. Strati-
graphic anomalies temper correlations between extreme precipitation and apparent re-
sistivity shifts, as the thalweg positioning within a vast catchment ensures residual mois-
ture retention that averts detectable drying effects. Spatial variability in precipitation,
coupled with heterogeneous compaction and porosity from the former marsh's infilling
with debris, further dilutes direct hydrogeological responses, underscoring the role of
subsurface heterogeneity in modulating infiltration and recharge patterns.

3.4. ANOVA (VARIANCE ANALYSIS)

The temporal variability of p. considering the precipitation, was assessed at each
depth level using two-way ANOVA, an extension of one-way ANOVA that simultane-
ously evaluates the effects of two categorical predictors -here, measurement date (Da-
tum) and precipitation level (P_level)- along with their interaction on a continuous re-
sponse variable (pa). The model specification was Rho ~ C(Datum) x C(P_level), where
P_level was derived globally by tercile binning of the four-month mean precipitation
that included the survey month and the three preceding months. Computations were
performed separately for each depth level using ordinary least-squares regression fol-
lowed by Type-11 ANOVA in the statsmodels framework.
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At 0.25m depth (Fig. 3), the analysis revealed one of the strongest overall effects (F(5,00)
= 54.60; p < 107). The 2019-10-05 campaign yielded a stable p, median near 30 Qm
with a broad interquartile range (IQR), reflecting considerable lateral heterogeneity de-
spite belonging to the “Low precipitation” category. The 2020-04-15 survey (Medium)
exhibited a reduced median of ~25 Qm and an IQR compressed to one-third of the pre-
vious width, indicating spring precipitation-induced homogenization. The 2021-08-15
record (High) collapsed to a single outlier, consistent with pore-space saturation during
extreme summer rainfall. The 2024 campaigns (Low) reverted to elevated medians (28—
32 Qm) and narrow IQRs, underscoring soil moisture memory: the thalweg position of
the site sustains sufficient saturation to buffer p, even under nominally dry conditions.

The interaction term (Datum x P_level) proved highly significant (p < 10~), suggest
that precipitation influence is seasonally modulated rather than additive. During wet
periods, lateral pa scatter diminishes dramatically; during dry periods, antecedent satu-
ration limits the expected resistivity rise. This pattern is most pronounced at 0.25 m and
explains the absence of a detectable global P_level main effect: the influence is strictly
context-dependent and emerges only through the interaction term.

AR values after ANOVA (by dates, depth: 0.25m)
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Fig. 3. Results in the first depth level (25cm), where the variance is the most significant

4. CONCLUSION

The results conclusively suggest that the linkage between geoelectric monitoring
and antecedent rainfall is far from univocal. Far more intricate interplays governed by
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lithology, rock-physical parameters, and pore-scale heterogeneities ultimately dictate
measured pa. Regression analysis reveals a negative covariance in the vadose zone that
systematically attenuates with depth, mirroring the progressive hydraulic damping of
meteoric recharge. ANOVA indicates statistically resolvable shifts in p. populations
down to intermediate depths; however, these shifts cannot be ascribed univocally to
rainfall totals in every horizon. By fusing regression and ANOVA, we gain a framework
with potentialfor anomaly detection, data-quality assurance, and the disentangling of
spatial versus temporal controls. This dual-statistical workflow elevates the fidelity of
DC geoelectric datasets and highlights threshold-driven hydrogeophysical responses.
The statistically evaluateddataset from the University of Miskolc campus gives an in-
sight to the physical processes of areas with similar geology, therefore can constitute a
good base for future research.
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