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Abstract: The study examines the impact of precipitation on the distribution of apparent specific electrical 

resistivity (ρa) in the soil through statistical analysis of data measured in a direct current geoelectric Dipole-

Dipole (DPDP) electrode array in the park of the University of Miskolc, on an artificially constructed area. 

Following data filtering, regression analysis (Montgomery et al., 2012) and analysis of variance (ANOVA) 

(Montgomery, 2012; Kim, 2014) were applied to investigate the relationship between precipitation and ρa. 

Separate analyses were conducted for each measured depth level as a function of the precipitation amount 

recorded over the three months prior to the geoelectric measurements. The combined application of statis-

tical methods provides an effective tool for understanding the hydrogeological state of the soil and the 

dynamics of subsurface water movement, while considering the influence of environmental factors and 

human activity. The results of the study may be valuable for interpreting data provided by monitoring sys-

tems and for shallow geophysical investigations aimed at mapping the hydrogeological functioning of an 

area. 
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1. INTRODUCTION 

 

In geophysical engineering the first decision is always finding the best appliable, 

and most economical method to the given problem.  These methods rely on different 

physical phenomena that have their own limitations. The uncertainties discussed in this 

study is the direct current geoelectrical monitoring method, or ERT as commonly refer-

enced. Since the method works with current injected to the subsurface, precipitation is 
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a key question that needs to be examined. The study aims to approach a rather unprec-

edented methodology: applying statistical evaluation to raw measured monitoring data, 

from repeated measurements through a four years window. Statistical processing and 

interpretation of geoelectric data are advantageous in shallow geophysical investiga-

tions, as they enable a more complex yet reliable examination of subsurface structures. 

One of the most critical practices following measurements is the identification and han-

dling of erroneous or outlier data, which may arise from noisy environments or meas-

urement errors. Filtering such data is essential, as they can significantly distort inverted 

images (Isaaks et al., 1989). Although there are inversion solutions, such as those using 

the L1 norm (the sum of the absolute values of a vector's components), which is less 

sensitive to outliers, the study only works with ρa datasets, therefore manual data filter-

ing had to be applied to the geoelectric data to eliminate unrealistically high values 

clearly resulting from measurement errors. The measurements were conducted in the 

park of the University of Miskolc under varying precipitation conditions and with mon-

itored meteorological histories. Polynomial regression analysis (Montgomery et al., 

2012) was performed to explore potential relationships between precipitation and ρa. 

The measurements aimed to observe the effect of precipitation on the geoelectric resis-

tivity of the soil, considering the geological characteristics of the profile. The investi-

gated area was dominated by valley-foot debris prior to filling, upon which construction 

debris was deposited in multiple layers of varying thickness decades ago, followed by 

a cover of locally available clayey soil several tens of centimetres thick. These layers, 

mixed with significant clay content, behave as good electrical conductors. As expected, 

specific resistivity decreases under wet conditions, while an increase in resistivity is 

observed during dry periods. At the outset of the measurements, a key question was to 

determine the depth to which geoelectric monitoring could detect the effects of wet and 

dry periods in the given area. This behaviour is closely related to the soil's properties, 

such as its water-holding capacity and the presence of dissociated ions in the pore space. 

Different soils and rocks respond uniquely to various weather conditions (Cheban et al., 

2014). The selected study area at the University of Miskolc represents a transition be-

tween low- and high-permeability soils. The results indicate a slight negative correlation 

between precipitation and ρa. The low slope of the polynomial regression models sug-

gests that increased precipitation causes only minor changes in the ρa values of the mid-

dle and deeper soil layers, consistent with the soil's clay content and the conductivity of 

near-surface layers. By exploring the relationships between changes in the water bal-

ance and electrical conductivity, more accurate conclusions can be drawn about the ar-

ea's moisture content and the dynamics of subsurface water movement. It is important 

to note that geoelectric measurement results are influenced not only by precipitation but 

also by other environmental factors, such as temperature, vegetation, or the degree of 

anthropogenic disturbance. The findings of this study also highlight the extent to which 

changes in environmental parameters can affect measured resistivity values. This is par-

ticularly significant for the design of monitoring systems aimed at accurately tracking 
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long-term changes. The research focused on analysing measured DPDP data and pre-

cipitation conditions using two-way ANOVA and polynomial regression. The study ex-

clusively utilized ρa data, and inversion results are not discussed in this manuscript. 

Based on the findings, the combined use of statistical analyses suggests a simple yet 

potentially effective tool for monitoring the hydrodynamic state of the soil, which may 

prove useful in future shallow geophysical investigations. 

1.1. LITERATURE REVIEW 

Long-term multielectrode geoelectric monitoring with fixed electrical resistivity to-

mography (ERT) arrays has proven highly effective for quantifying the influence of 

precipitation on subsurface apparent resistivity and soil moisture over extended periods, 

revealing both rapid event-scale responses and gradual multi-annual trends (Whiteley 

et al., 2019; Hojat et al., 2022). In Vertisols, for example, seasonal wetting–drying cy-

cles driven by cumulative rainfall produce resistivity variations exceeding one order of 

magnitude (10–500 Ωm to <50 Ωm), with the most dramatic decreases occurring during 

the first major rainfalls after prolonged dry periods when desiccation cracks facilitate 

rapid infiltration (Amidu and Dunbar, 2007). Permanent ERT installations on landslide-

prone slopes consistently record sharp resistivity reductions of 30–70 % in the upper 5–

15 m within 12–72 hours of intense precipitation (>20–50 mm/day), often followed by 

partial recovery over weeks as drainage occurs; these transient low-resistivity zones di-

rectly precede measurable displacement in many cases, underlining the value of geoe-

lectric monitoring for early-warning systems (Supper et al., 2014; Palis et al., 2017; 

Uhlemann et al., 2017). Depth-dependent behaviour is a recurrent observation: near-

surface pseudosections (0–3 m) typically show high-amplitude, short-term fluctuations 

tightly coupled to individual rainfall events, whereas deeper levels (8–20 m) exhibit 

damped, lagged responses or even inverse trends controlled by capillary rise, matrix 

flow, or redistribution through permeable layers (Carrière et al., 2013; Zhao et al., 2020; 

Scaini et al., 2021). In a loess landslide, Zhao et al. (2020) documented downward mi-

gration rates of low-resistivity fronts of approximately 0.3–0.8 m/day following heavy 

rain, while Watlet et al. (2018) tracked focused infiltration along karst conduits that 

remained active for up to 40 days after rainfall ceased, generating localised resistivity 

anomalies <10 Ωm that propagated from the surface to cave systems at depths of 30–50 

m. Agricultural and hillslope studies further illustrate the dominance of cumulative an-

nual precipitation on bulk resistivity, with sites receiving >800 mm/year showing sus-

tained low-resistivity periods throughout the wet season, whereas calcic horizons or 

clay-enriched layers act as effective barriers that restrict deep percolation and maintain 

elevated moisture (and thus lower resistivity) in the overlying vadose zone for months 

(Kotta et al., 2020; Scaini et al., 2021). Time-lapse inversion results frequently report 

seasonal true-resistivity contrasts of 200–300 % between dry and wet states, yet most 

published works rely on visual comparison of inverted tomograms, percentage-change 
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maps, or simple linear correlation with rainfall totals rather than formal statistical mod-

elling of the apparent resistivity time series itself (Brunet et al., 2010; Hojat et al., 2022). 

Quantitative petrophysical conversion using Archie’s or Waxman-Smits models is oc-

casionally applied, but calibration is challenging in heterogeneous soils and often lim-

ited to point-scale neutron probe or TDR validation (Scaini et al., 2021). Consequently, 

while inversion-based 4D-ERT provides spatially distributed images of moisture evo-

lution, the direct statistical treatment of long-term apparent resistivity data—particularly 

when stratified by investigation depth—remains relatively scarce.  

The approach of applying polynomial regression and variance analysis directly to 

multi-year sequences of apparent resistivity values extracted at discrete depth levels of-

fers a robust, inversion-independent framework that explicitly quantifies the magnitude, 

nonlinearity, and statistical significance of precipitation effects across the subsurface 

profile. Compared to the predominantly qualitative or inversion-centred methodologies 

that dominate the literature (e.g., Supper et al., 2014; Uhlemann et al., 2017; Whiteley 

et al., 2019), this statistically driven analysis of raw apparent resistivity data provides a 

lightweight yet rigorous complement capable of detecting subtle depth-specific trends 

and threshold behaviours that may be obscured by inversion artefacts or smoothing con-

straints, thereby enhancing the interpretive power of permanent geoelectric monitoring 

arrays for hydrological and geotechnical applications. 

2. MATERIALS AND METHODS 

2.1.  THE ERT METHOD 

Geoelectric methods are the second most widely used geophysical techniques after 

seismic methods, applied extensively in solving hydrogeological, environmental, engi-

neering geological, and archaeological problems. Their popularity stems from their 

broad applicability. Direct current geoelectric methods are primarily used for shallow 

investigations (penetrating a few hundred meters). Their operating principle involves 

injecting current into the ground through electrodes A and B, while measuring the po-

tential difference between measuring electrodes M and N. In specific cases, three- or 

two-electrode configurations or focusing arrangements are also employed. The meas-

ured data, ρa reflects the average properties of the rock surrounding the electrode ar-

rangement. In this study, the DPDP electrode configuration was used due to its excellent 

horizontal sensitivity. Nowadays, measurements are often conducted using multielec-

trode systems (Figure 1.), where a computer controls the operation of current and po-

tential electrodes.  
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Fig. 1. Illustration of direct current multielectrode ERT measurement with DPDP array (Szalai, 2020) 

During two-dimensional (2D) measurements, electrodes are placed in a line at fixed 

intervals, enabling simultaneous investigation of vertical and horizontal variations in 

specific resistivity. The measured data can be converted into true specific resistivity 

using inversion techniques, achieved by iteratively refining an initial model to minimize 

the discrepancy between measured and calculated data. Due to the indirect nature of 

geoelectric data, the profile must be interpreted in the context of geological conditions. 

2.2.  THE STUDY AREA PARAMETERS 

In Table 1 the lithological and geoelectric parameters can be seen of the study area. 

The campus of the University of Miskolc was a marshland in the past, before the gov-

ernment built the university, the area was drained and filled up with construction debris. 

The thickness and composition of this compacted debris changes everywhere, but the 

layers were examined in a waterpipe trench near to the geoelectric sections, giving reli-

able information for the measurement. Though the permeability and porosity varies 

greatly in this layer, it is expected that precipitation induced geoelectrical response 

change is measurable to at least a certain depth. The undermost layer serves as a water 

basin in the valley, collecting the waters from the sides, with very low permeability. 

Table 1. Calculated parameters in representative depths 

Lithology 
Depth 

[m] 

Porosity 

[%] 

Permeability 

[mD] 

ρa 

[Ω] 

Clayey soil 0-0.25 25 100 5-15 

Compacted construction debris (inhomogenous) 0.25-3 15-40 10-100 200 

Weathered andesite tuff /compact clayey soil 3- 2-8 0.1 500 
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2.3.  THE APPLIED STATISTICAL METHODS 

The application of statistical methods in processing geophysical data is highly effec-

tive for uncovering the structure, relationships, and reliability of measured data. In the 

analysis of geoelectric measurements, detailed statistical evaluation enables the explo-

ration of temporal changes in the electrical properties of the soil and the quantification 

of the impact of precipitation conditions. In this study, descriptive statistical measures 

were used to determine the fundamental characteristics of the dataset. These include the 

correlation analysis, regression analysis, and variance analysis. Interquartile range 

(IQR) was used to quantify the distribution characteristics of the variables. These 

measures provide a statistical summary of the data and facilitate the identification of 

potential anomalies or outliers. Correlation analysis examines the strength and direction 

of relationships between different measurement parameters. Regression analysis ena-

bles the prediction of a dependent variable (e.g., ρa) based on one or more independent 

parameters (e.g., precipitation amount). In addition to linear regression, the method can 

be extended to multivariate models to uncover more complex relationships. The param-

eters of the regression model, such as the slope (beta) and the goodness of fit (R²), pro-

vide a more precise understanding of these relationships. Analysis of variance 

(ANOVA) is used to investigate significant differences between the means of multiple 

groups. This method is particularly useful for comparing measurements taken at differ-

ent time points, such as evaluating differences in specific resistivity values measured 

across different years, while still considering the precipitation. Based on the F-statistic 

and its associated p-value, it can be determined whether the differences are statistically 

significant or the result of random fluctuations. The statistical analyses performed pro-

vide a robust foundation for interpreting the measured data. These geostatistical tools 

enabled a detailed analysis of the impact of precipitation, the identification of anoma-

lies, and the evaluation of the significance of differences in specific resistivity values 

measured across different periods. The results contribute to a better understanding of 

subsurface processes and the further development of monitoring systems in the field of 

shallow geophysical investigations. 

2.4.  DATA FILTERING 

During the data filtering process, the ρa values of the geoelectric DPDP data were 

examined, and erroneous or outlier values were filtered out from the dataset. The initial 

step involved a visual inspection of the data using boxplot visualization. The boxplot 

enabled rapid identification of the data distribution and any extreme values. In the next 

step, outliers were filtered using the IQR based on quartiles. The lower boundary is 

calculated by Q1-1.5xIQR, while the upper boundary is given by Q3+1.5xIQR. Addi-

tionally, manual constraints were applied to the ρa values to prevent unrealistically high 

values from distorting the analyses. The upper limit was set at 5000 Ωm, and the lower 
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limit at -5000 Ωm, because from experience it is known, that these values are the real-

istic measured limits with the method, values exceeding these limits are usually meas-

urement errors. Identified outliers were replaced using linear interpolation. The quality 

of the measurement was good, with less than 3% of the points removed and reinterpo-

lated. During interpolation, values were recalculated based on neighbouring data points, 

ensuring the continuity of the dataset while preventing extreme values from further dis-

torting the analysis. The proportion of outliers was quantified and examined using a 

representativeness factor, expressed as a percentage, but not displayed in this study. 

Given the test area has a rather simple layer structure, and free of unknown anomalies, 

there was no risk of removing the outliers. The complete data cleaning process improved 

the reliability of the dataset by removing erroneous values, thereby minimizing their 

distorting effects. The executed data cleaning process provided a stable foundation for 

the statistical analyses conducted in subsequent stages. 

3. RESULTS 

3.1.  REGRESSION ANALYSIS OF PRECIPITATION ON ARS 

To investigate the joint changing of ρa and precipitation, several curve fitting meth-

ods were tried, and finally second degree polynomial regression analyses was chosen to 

be showcased. Figure 2. illustrates the relationship between precipitation amount (mm) 

and ρa at the representative depth of 25 cm. Due to constraints, we only subject to dis-

play the depth level, in which the correlation is the strongest.  In the analysis, second-

degree polynomial regression fit (calculated curve) was applied to describe the nonlin-

ear changes occurring with increasing precipitation. The results in Figure 2. reveals a 

nonlinear inverse relationship between ρa and precipitation, averaged over the preceding 

four months, with data points clustered by measurement dates from 2019 to 2024. The 

fitted curve exhibits a hyperbolic decay, where higher precipitation levels correspond to 

markedly lower apparent resistivity values, approaching asymptotic behaviour near ρa 

≈ 10–20 Ωm for precipitation exceeding 30 mm, while drier conditions (precipitation < 

10 mm) yield elevated resistivity up to 50 Ωm. This pattern indicates soil moisture sat-

uration effects in the near-surface layer. In the context of the site's hydrogeological set-

ting -an artificially infilled marshland comprising construction debris and clay-rich soils 

within a drainage basin- the observed resistivity reduction with increased precipitation 

reflects enhanced electrolytic conduction due to pore water infiltration, albeit moderated 

by the low permeability of clay matrices that promote surface runoff and lateral drainage 

via engineered channels to an adjacent river. The quadratic curvature suggests a thresh-

old-driven response: initial precipitation increments rapidly decrease resistivity through 

partial wetting of heterogeneous fill materials, but further inputs lead to diminished mar-

ginal effects as the soil approaches hydraulic saturation, with persistent groundwater 

presence facilitating capillary rise and maintaining baseline conductivity even during 
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low-precipitation periods; this implies seasonal recharge dynamics where episodic 

heavy rains in wetter years (e.g., 2020–2021) overwhelm drainage capacity, potentially 

exacerbating localized waterlogging in the debris-laden subsurface, while prolonged dry 

spells in 2024 elevate resistivity through desiccation cracking in clays, thereby influ-

encing aquifer vulnerability to contamination transport along preferential flow paths. 

 
Fig. 2. Polynomial regression graph of the DPDP data, 25cm penetration depth 

3.2.  CORRELATION ANALYSIS 

Across the entire depth range, it can generally be concluded that the average corre-

lation is weakly negative, with its minimum at 3.75 m depth (strongest negative rela-

tionship) and maximum at 6.5 m (strongest positive relationship). Based on R², the 

model fit is weak, with the best fit occurring at 7.25 m depth. The average MSE is 27.87, 

with the highest error at 0.375 m depth. The correlation exhibits a slightly positive re-

lationship with depth (correlation: 0.28). This indicates that in shallow layers (0-4 m), 

negative correlation is more prevalent (increased precipitation reduces resistivity, e.g., 

due to soil moisture), but it weakens with depth and occasionally becomes positive. The 

most negative range is around 3-4 m (-0.17 to -0.20). A weak negative relationship ex-

ists with depth (-0.18). The fit is generally weak (R² ≈0 or negative), but improves at 

some deeper points (e.g., 7.25m: 0.44; 7.5m: 0.37). This suggests that the polynomial 

model may better capture nonlinear relationships in deeper layers. A strong negative 

relationship (-0.73) is observed. The error decreases drastically with increasing depth: 

high in shallow layers (e.g., 0-1m: ≈76), low in deeper ones (e.g., 5-6 m: ≈4-5). This 
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may indicate greater variability in shallow layers (e.g., due to meteorological effects), 

whereas values are more stable at greater depths. Table 2 lists the main calculated pa-

rameters of correlation and error of model, in the three main depth domains, two levels 

for each domain. 

Table 2. Calculated parameters in representative depths 

Depth (m) Correlation R2 MSE 

0.25 -0.13 0.08 83.36 

0.5 -0.08 0.21 82.26 

3.0 0.08 -0.02 37.87 

4.0 -0.16 -0.00 22.89 

5.125 -0.00 0.01 5.12 

6.875 -0.06 -0.16 8.02 

3.3. PHYSICAL ASSUMPTIONS 

Based on site-specific insights, the clay-dominated soil exhibits strong electrical 

conductivity due to abundant free ions on particle surfaces, with resistivity further de-

clining in moist conditions as pore water enhances electrolytic pathways. Dry periods 

induce only modest resistivity increases while maintaining overall low values, aligning 

with the expected gentle negative regression slope in shallow subsurface zones. Strati-

graphic anomalies temper correlations between extreme precipitation and apparent re-

sistivity shifts, as the thalweg positioning within a vast catchment ensures residual mois-

ture retention that averts detectable drying effects. Spatial variability in precipitation, 

coupled with heterogeneous compaction and porosity from the former marsh's infilling 

with debris, further dilutes direct hydrogeological responses, underscoring the role of 

subsurface heterogeneity in modulating infiltration and recharge patterns.  

3.4. ANOVA (VARIANCE ANALYSIS) 

The temporal variability of ρa considering the precipitation, was assessed at each 

depth level using two-way ANOVA, an extension of one-way ANOVA that simultane-

ously evaluates the effects of two categorical predictors -here, measurement date (Da-

tum) and precipitation level (P_level)- along with their interaction on a continuous re-

sponse variable (ρa). The model specification was Rho ~ C(Datum) x C(P_level), where 

P_level was derived globally by tercile binning of the four-month mean precipitation 

that included the survey month and the three preceding months. Computations were 

performed separately for each depth level using ordinary least-squares regression fol-

lowed by Type-II ANOVA in the statsmodels framework. 
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At 0.25m depth (Fig. 3), the analysis revealed one of the strongest overall effects (F(5,∞) 

= 54.60; p < 10⁻⁵). The 2019-10-05 campaign yielded a stable ρa median near 30 Ωm 

with a broad interquartile range (IQR), reflecting considerable lateral heterogeneity de-

spite belonging to the “Low precipitation” category. The 2020-04-15 survey (Medium) 

exhibited a reduced median of ~25 Ωm and an IQR compressed to one-third of the pre-

vious width, indicating spring precipitation-induced homogenization. The 2021-08-15 

record (High) collapsed to a single outlier, consistent with pore-space saturation during 

extreme summer rainfall. The 2024 campaigns (Low) reverted to elevated medians (28–

32 Ωm) and narrow IQRs, underscoring soil moisture memory: the thalweg position of 

the site sustains sufficient saturation to buffer ρa even under nominally dry conditions. 

The interaction term (Datum × P_level) proved highly significant (p < 10⁻⁹), suggest 

that precipitation influence is seasonally modulated rather than additive. During wet 

periods, lateral ρa scatter diminishes dramatically; during dry periods, antecedent satu-

ration limits the expected resistivity rise. This pattern is most pronounced at 0.25 m and 

explains the absence of a detectable global P_level main effect: the influence is strictly 

context-dependent and emerges only through the interaction term. 

 
Fig. 3. Results in the first depth level (25cm), where the variance is the most significant 

4. CONCLUSION 

 

The results conclusively suggest that the linkage between geoelectric monitoring 

and antecedent rainfall is far from univocal. Far more intricate interplays governed by 
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lithology, rock-physical parameters, and pore-scale heterogeneities ultimately dictate 

measured ρa. Regression analysis reveals a negative covariance in the vadose zone that 

systematically attenuates with depth, mirroring the progressive hydraulic damping of 

meteoric recharge. ANOVA indicates statistically resolvable shifts in ρa populations 

down to intermediate depths; however, these shifts cannot be ascribed univocally to 

rainfall totals in every horizon. By fusing regression and ANOVA, we gain a framework 

with potentialfor anomaly detection, data-quality assurance, and the disentangling of 

spatial versus temporal controls. This dual-statistical workflow elevates the fidelity of 

DC geoelectric datasets and highlights threshold-driven hydrogeophysical responses. 

The statistically evaluateddataset from the University of Miskolc campus gives an in-

sight to the physical processes of areas with similar geology, therefore can constitute a 

good base for future research. 
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