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Abstract: This study aims to develop an analytical method for calculating the parameters of destruction 

diagrams of cylindrical rock samples experiencing wedge-shaped fractures, facilitating the effective disinte-

gration of rocks. The method employs analytical modeling to simulate the destruction process of cylindrical 

rock samples, leveraging experimental values of three key rock properties: shear resistance limit, internal 

friction coefficient and external friction coefficient. The proposed method accurately determines the limit 

and residual strength of the rock samples using these three indicators, which can be experimentally ob-

tained through straightforward procedures in mining enterprises. This research marks the first instance of 

analytically modeling the destruction of cylindrical rock samples with wedge-shaped fractures while 

accounting for both internal and external friction. The practical application of this method allows for the 

rapid assessment of stress-strain parameters in rock samples, thereby enhancing the efficiency of rock 

disintegration processes in mining operations. 
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 1. INTRODUCTION 

The proposed method makes it possible to determine the parameters of the stress–strain 

diagrams of cylindrical rock samples with their wedge-shaped fracture. Analytical mod-

eling of the process of destruction of cylindrical rock samples with their wedge form of 

destruction was carried out using experimental values of three indicators of rock proper-

ties – shear resistance limit, internal and external friction coefficients, which in simple 

ways can be established experimentally in the conditions of mining enterprises, where 

the calculation results can be quickly used to assess the effective destruction during 

disintegration. The scientific novelty of the article lies in the fact that it was the first to 

carry out analytical modeling of the process of destruction of cylindrical rock samples 

with their wedge-shaped fracture taking into account internal and external friction. 

One of the important information characteristics necessary to control the stress–strain 

state of a rock mass and their effective destruction during disintegration is the tensile 

strength and residual strength of samples, determined from the “longitudinal stress–strain” 

diagrams of their ultimate destruction. Since the 60s of the last century, these character-

istics have been taken on special presses, which are available in some research institutes, 

for example, at the Institute of Geotechnical Mechanics of the National Academy of Sci-

ences of Ukraine and Krivoy Rog National University. However, this work requires 

highly qualified personnel, and the equipment is located far from the consumer, where 

prompt information about the properties of rocks is precisely needed. Therefore, there 

is a need to develop an analytical method for calculating the strength limits of samples 

with knowledge of the properties of rocks, determined by simple methods available to 

mining enterprises. Attempts have been made to mathematically model the processes 

of destruction of samples (Nesmashny 2017; Bingxiang 2013; Meyer 2013; Tarasov 

2013; Zhu 2019; Wang 2021; Zhou 2022; Tin 2012). But these models have not been 

brought to the level of completed analytical methods for calculating the strength pa-

rameters of rock samples. 

To experimentally determine the parameters of rock fracture diagrams, prismatic or 

cylindrical samples are used. Methods for analytical determination of parameters for 

prismatic samples are described in detail in the book (Vasilyev 2018). Perhaps more 

widely than prismatic samples, cylindrical samples from core drilling are used to deter-

mine experimental parameters. Therefore, there is a need to develop analytical methods 

for calculating strength for cylindrical samples. 

2. METHODOLOGY 

It is known that during uniaxial compression of cylindrical samples, a wedge form of their 

destruction is formed (Fig. 1) – one of the most common of the five well-known ones. 
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 a) wedge b) diagonal 

Fig. 1. Forms of destruction of a rock sample according to A.I. Baron  

It seems possible to analytically determine the strength of samples with this form 

of destruction using the following method. To describe the process of rock destruction, 

the Coulomb criterion of maximum effective shear stresses on slip lines (SL) and slip 

surface (SS), is widely used, in our opinion, more successfully. The Coulomb criterion 

(Vasilyev 2018; Aptukov 2016; Kurguzov 2019; Vasiliev 2015; Kostandov 2016; 

Vasiliev 2016) for cohesive media is based on the assumption that the shear resistance 

of rock τα on the inclined SL site under consideration is equal to the sum of the re-

sistance to pure shear (ultimate shear strength) and a value proportional to the normal 

stress σα on this site (compression is positive), from internal friction. When the sample 

fails, a crack forms on the SL. As the crack develops, some of the material is released 

from the load. If we know, according to the plane strain model, at each moment the 

coordinates of the tip of one or two cracks, it is possible to determine the load-bearing 

part of the material of the sample, which is equal to the initial area of the latter minus 

the part that came out from under the load during the development of the crack along 

the SL. The part of the sample released from the load is determined from the abscissa 

values of the crack tip as x = y ctg, where y is the ordinate of the OY axis,  is the 

angle of inclination of the surface at the crack tip relative to the x-axis. If we know the 

stresses y at the crack tip, its coordinates and the pattern of the contact stress distribu-

tion function on the load-bearing part of the sample, it is possible to develop, based on 

the Coulomb criterion, a method for calculating the parameters of the sample fracture 

diagrams in the presence of values of four property indicators – shear resistance limit, 

external (contact) and internal coefficients friction, elastic modulus. 

First we’ll describe the concept of sample failure. In Figure 2 we show a sample. The 

sample is subject to a vertical load and contact tangential stresses arising from contact 

friction and directed against the transverse deformation, into the interior of the sample. 
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The center of the coordinate axes is located in the upper left corner of the sample. On the 

upper plane of the left longitudinal half of the sample, the contact shear stresses c have 

a positive sign, and on the lower plane they have a negative sign. On the right half the 

signs have opposite meanings. Note that under the action of a vertical load, the sample 

acquires a convex shape. Therefore, the rule of pairing of tangential stresses is appli-

cable in the corners of the sample. 

The wedge shape is formed on one of the halves of the contact plane and is charac-

terized by the intersection of the SL of the vertical plane of symmetry with its exit to 

the opposite half of the sample.  

First of all, it is necessary to decide in which direction the crack will develop from 

top to bottom or bottom to top. A crack may form on one of the contact planes at the 

point with the lowest resistance to fracture. 

The essence of the problem does not change if we consider the development of 

a crack according to the diagram (Fig. 2), starting from the upper horizontal plane of the 

right half of the sample. It’s more clear this way. As can be seen from the figure, we are 

dealing with a dissimilar pair of sliding surfaces (one convex, the other – concave), at 

the meeting point of which the stresses should have the same values. Such a meeting 

point is the point О on the vertical plane of symmetry (Fig. 2), at which the contact 

tangential stresses are zero. Let us imagine that a crack first forms at point n, at a dis-

tance х0 from the right corner of the sample. According to our ideas, according to the 

accepted scheme in Fig. 2, the crack develops along the SL , the second (left) of them 

is connected at the moment when the crack reaches the SL , at the point at which the 

load on it reaches a value exceeding that on the SL . 

To describe the evolution of the formation of a wedge-shaped fracture of a cylin-

drical sample, it becomes necessary to develop a law for the distribution of contact 

stresses. For a prismatic sample of unit width by L. Prandl (Vasilyev 2018), this law is 

represented by the formula 

 
0

2
1 ,c

yi y

f x

h
 

 
= + 

 
 (1) 

where: 

0y  –vertical normal stress at the corner point of the sample, Ра, 

fc –contact friction coefficient, 

x – abscissa of the point under consideration, m, 

h – sample height, m. 

Now we should relate formula (1) to the area of the cylinder, but it should be differ-

ent. Unlike a prismatic sample, in which the width of the sliding surface remains constant, 

in a cylindrical sample this surface is constantly expanding. We tried several models, 

but they gave less than satisfactory results. Let us describe the proposed approach to 

the distribution law of contact normal stresses. 
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a) b) c) d) 

Fig. 2. Scheme of wedge formation during compression of a rock sample: 

a) at the moment of pre-fracture, b) at the moment of formation of the right side of the wedge, 

c) at the moment of formation of the left side of the wedge, 

d) at the moment of formation of the wedge shape 

First of all, let’s write the formula for the circumference of a cylinder in the ХOY 

coordinate system (Fig. 3) 

 
2 2 2( ) ,x y y r− + =  (2) 

where: 

x and y – abscissa and ordinate of the point in question on the circle, m, 

r – radius of the cylinder circle, m. 

In Figure 3 are marked: O – center of the sample circle, vY and vX – axes of the co-

ordinate system,  – segment opening angle, rad, a, b, c, and d are points on the circle 

that limit the length of the chords. 

From the transformation of formula (2), we have 

 
22 ,y rx x= −   

where y is the ordinate of the chord points, m. 

Then the formula for the segment chord length has the form 

 22 ,a ux x= −  (3) 

u – circle diameter, m. 

Then, using expressions (1) and (3), we write the formula for the distribution of ver-

tical stress on the contact surface of a cylindrical sample similarly to L. Prandl’s for-

mula for prismatic samples, and we associate the abscissa x to one of the SL, for ex-

ample, to the left SL 1 (Fig. 2) 
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 (4) 

where y – normal stress at the crack tip, Ра. 

 

Fig. 3. Scheme of the formation of a bearing area during the development 

of two symmetrical cracks in a cylindrical sample 

Let us write, according to expression (4), the formula for the force of influence on 

the part of the sample P (N) emerging from the load at the moment of crack develop-

ment, in the form 

 

2

2

0

2
2 ,

x

c
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ux x f
P x ux x dx
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 

  
 −
 = + −
 
 
  (5) 

Now, using tabular integrals, we will solve the integrals of formula (5), taking into 

account that according to (Kostandov 2016), the distribution functions of normal contact 

stresses for different SL (Fig. 2) have different forms: 

at x  0.5u 
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   
− − −   

   

 (6) 

where А = (0.5 + х0 – ха); 
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at x  0.5u 
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 (7) 

where В = (0.5 + х0 – хη). 

To determine the specific force p on the contact plane during crack development 

(beyond the elastic limit), the value of the force should be divided by the value of the 

area emerging from the load. Then, based on expressions (6) and (7), we find the value 

of the specific force on the load-bearing part of the sample equal to πu2/4 (circle area) 

minus the area released from the load during crack development: 

at х ≥ 0.5u 
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(8)

 

at х ≤ 0.5u 
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Now it is necessary to determine the stresses у at the crack tip. We use the method 

described in article (Vasiliev 2016) for a prismatic sample. Then the system for calcu-

lating stresses for the right SL  should be written taking into account the fact that on 

the plane of symmetry, the contact friction is zero 
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where: 

 and  = arctg – coefficient and angle of internal friction, rad, 

 – angle of rotation of the SS  from contact friction at the crack tip, rad, 

kn – limit of material shear resistance, 

ko – effective shear stress at point O, Pa, 
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 (12) 

In this case, it is necessary to comply with the condition: х ≥ 0.5u, х = u – х. 

The angle of inclination , rad, of the SS  is determined by the formula 

 
3π

.
4 2

 


 = − − +  (13) 

Now consider the development of a crack along the left PS  at х ≤ 0.5u. Stresses y
  

are determined by the system of equations 
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where: 
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where  and c – angles of rotation of the SS  from contact friction on the SS  

itself and on the lower contact plane at point c, rad. 

In this case, it is necessary to comply with the condition: х  0.5u, x = х. 

The angle of , rad, inclination of the SS  is determined by the formula 

 
3π

/ 2 .
4

   = − +  (15) 

Now, using the value of the specific force acting on the load-bearing (not released 

from the load) part of the sample, one should proceed to the stresses along its initial semi-

circle areas equal to u2/8. 

Based on formulas (8) and (9) using expressions (10)–(15), we determine the values 

of the specific force p on the load-bearing part of the sample. If we know the values of 

the specific force p, it is possible to determine the current values of deformations  
during the development of a crack – one of the parameters of the stress-strain diagram 

during uniaxial compression of samples according to the well-known formula 
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p

E
 =  (16) 

where Е –  elastic modulus, Ра. 

Using formula (16), a straight line of the true diagram is constructed (Fig. 4). Now 

it is necessary to determine the values of the second parameter – the current value of 

the strength of the sample on the beyond-limit branch of the conditional diagram. To 

do this, you need to multiply the specific force values by the ratio of the load-bearing 

area of the sample to the initial area of the latter. Multiplying these parameters should 

provide an initial value of stress equal to the value of the specific force, and a decrease 

in strength on the beyond-limit branch of the diagram. To do this, we express the area 

emerging from the load in the form of a segment (Fig. 3), using the well-known for-

mula 

 
2

( sin ),
8

abv

u
S  = −  (17) 

where  – segment opening angle, rad. 

Angle  
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u
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Then the area of segment abv (Fig. 3) during crack development 
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2

2 2arcsin 2 2(1 2 ) .
4
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u
S ux x x ux x    = − − − −  (19) 

Then the load-bearing area of the semicircle of the sample 
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 (20) 

Now, taking into account that the area of the semicircle is equal to πu2/8, we write 

the strength formula on the beyond-limit branch of the “longitudinal stress–strain” dia-

gram based on expressions (8), (9) and (20) in the form 

 ( )
2 2

2 2

2

8 π
arcsin 2 2(1 2 ) .

π 8 4
c

p u u
ux x x ux x

u


 
= − − − − − 

 
 (21) 

Now the specific force and abscissa x should be given specific values in relation to 

determining the current values of the sample strength on the beyond-the-limit branch 

of the diagrams according to formulas (8) and (9). 
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So, when at х ≥ 0.5u 
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at х ≤ 0.5u 
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2
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u
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Using formulas (16), (22), and (23) using intermediate expressions, it is possible to 

determine the parameters of the true and conditional stress–strain diagrams by itera-

tion, which researchers obtain on presses with a wedge-shaped fracture of cylindrical 

samples in the form of a function of the limiting branches c = (). In Figure 4 pre-

sents these functions at a value of elastic modulus E = 2000 MPa and various values of 

rock property indicators for a sample with a height and diameter equal to unity. 

An important conclusion should be drawn from the analysis of the diagrams: the 

slope angle of the limiting curve c = (), the so-called decay modulus M, accepted 

by researchers as a constant characteristic of the material, similar to the elastic mod-

ulus E, depends on the numerical values of the rock properties and is not constant. To 

confirm the conclusion in Fig. 4 shows branch 5 at fc = 0. 

 

Fig. 4. Excessive curves of the wedge form of destruction of samples at: 

kn = 10 МPа, fс = 0.25, Е = 2000 МPа; 

1 – true diagram, 2 –  = 39, 3 –  = 35°, 4 –  = 30°, 5 –  = 39°, fс = 0 

The researchers note that with a wedge-shaped fracture and a load above 70–80% 

of the maximum, significant nonlinearity occurs. Let us add on our own that in the 

initial part of the transcendental curve there is a so-called strengthening of the material 

according to an increasing curve with its subsequent decline. 
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Many authors explain the roundness of the trans-branches by the plasticity of the 

rocks. In our opinion, these roundnesses have nothing to do with plasticity. Rocks 

are highly fragile materials. The roundness of the beyond-limit branches of the dia-

grams reflects the nonlinear relationships between stresses and areas released from 

under the load during the development of a crack. It should be noted that Hooke’s 

law is observed on the load-carrying part of the sample (line 1), i.e., the true diagram 

looks like a straight line, despite the fact that the conditional diagrams have non- 

-linearities. 

To confirm the reliability of the proposed method, we will compare the calculated 

values of the ultimate strength with experimental data borrowed from the inventory 

(Table 1). The coefficient of variation was 10.8%, which corresponds to good conver-

gence for rocks according to the method for assessing the convergence of calculated 

and experimental data by Prof. L.I. Baron. 

Table 1. Comparison of the calculated strength limits of cylindrical samples 

with wedge-shaped fracture with experimental data 

Rock type 

Experimental Calculated 

Cadastre kn, 

МPа 

, 

degree 

σс, 

МPа 

σс, 

МPа 

coefficient 

of variation, 

% 

Severely modified 

monocyte 
28.0 22 164 131.2 0.2 104 

Argillite 5.0 30 24.0 24.7 0.03 171 

Sandstone 10.0 30 55.0 49.5 0.11 158 

Limestone 12.0 30 60.0 59.2 0.08 158 

Siltstone 6.5 31 35.0 33.3 0.06 174 

Magnetite 

oxidized 
20.0 32 97.0 96.0 0.01 66 

Hornwort  16.0 34 84.0 83.8 0.10 67 

Slate 6.7 35 35.0 32.7 0.10 59 

Argillite 7.8 35 46.5  42.9 0.10 172 

Argillite 4.0 35 24.0 21.7 0.07 172 

Marbled limestone 8.0 35 37.0 42.8 0.13 66 

Sandstone 6.6 36 32.5 37.3 0.16 172 

Hematized tuff 25.0 36 134.0 139.- 0.04 67 

Skarned porferite  15.0 37 78.5 86.3 0.10 66 

Hornweed 25.0 39 138.0 158.0 0.20 66 

Garnet skarn 20.0 39 112.0 124.2 0.15 67 

Magnetite skarn 10.0 39 68.0 62,.4 0.09 67 

Average coefficient 

variations 
    0.11  
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3. CONCLUSION 

1. An analytical method has been developed for calculating the parameters of 

stress-strain diagrams for wedge-shaped fracture of rocks using three indicators 

of their properties (kn – limit of material shear resistance, coefficients of contact 

fc and internal μ friction), available for experimental determination in laborato-

ries of industrial enterprises in simple by technical means. 

2. The limiting branch of strength c = () in the initial region has a sharp linear 

increase in strength, the so-called hardening, which has not received a theoreti-

cal explanation in the theory of plasticity, followed by a transition to a smooth 

convex curve with a decrease in strength. We explain this phenomenon by the 

transition of the fracture process from a convex sliding surface to a concave 

sliding surface, characterized by this feature. It should be noted that Hooke’s law 

is observed on the load-bearing part of the sample, i.e., the true diagram looks like 

a straight line, despite the fact that the conditional diagrams have non-linearities. 

3. From the analysis of the diagrams, an important conclusion should be drawn: 

the slope angle of the limiting curve c = (), the so-called decay modulus M, 

accepted by researchers as a constant characteristic of the material, similar to 

the elastic modulus E, depends on the numerical values of rock properties and is 

not constant. 

Based on the maximum and minimum values of the normal stresses of the 

limit curves of the diagrams, the values of the limits and residual strength of the 

samples can be determined, which are equivalent in value to those obtained from 

the stress-strain diagrams obtained on presses. A comparison of the calculated 

tensile strengths with experimental data confirmed the high reliability of the de-

veloped method with a coefficient of variation within 0.108. 

4. In the future, it is planned to test the method with other forms of destruction 

(diagonal, longitudinal and explosion-like). 
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