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Abstract: Atypical but real practical problems relating to the dynamics of block-type foundations for 

machines are considered using the deterministic approach and assuming that the determined parameters 

are random variables. A foundation model in the form of an undeformable solid on which another unde-

formable solid modelling a machine is mounted via viscoelastic constraints was adopted. The dynamic 

load was defined by a harmonically varying signal and by a series of short duration signals. The vibration 

of the system was investigated for the case when stratified ground (groundwater) occurred within the side 

backfill was present. Calculation results illustrating the theoretical analyses are presented. 
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1. INTRODUCTION 

For machines most commonly block-type foundations are used. There is an exten-

sive literature on their dynamics, covering both theoretical and practical problems 

(Lipiński, 1980; Gazetas, 1983; Klasztorny at all, 1978; Major, 1962). But there are 

relatively few publications devoted to atypical problems, such as the change in the 

stiffness of the ground as a result of its gel injection (Tschebatarioff, 1964), freezing 

(Stevens, 1975), cementation (Chlang and Chae, 1972), underground water (Siva 

Reddy i in., 1970) and damage due to the use of unconventional solutions 

(Mironowicz, 1991). Such publications contribute to the knowledge on the dynamics 

of block-type foundations and so serve both theory and engineering practice. This 

means that they are worthy of continuation, as noted by, among others, the authors of 
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(Gazetas, 1983; Novak, 1989). The present study contributes to the above field, deal-

ing with selected natural and forced vibration problems for a system being a calcula-

tion model of a machine foundation sunk in the ground and bearing a machine mount-

ed on it. One, emerging from practice, problem is considered (Novak, 1989; Gazetas, 

1983; Braja, 1984): 

The presence of stratified soil within the foundation’s side backfill; more precisely 

the presence of groundwater up to height hd (fig. 1) and the occurrence of a stratum 

frozen down to depth hg. Practically, this applies to cases when the foundation is lo-

cated outdoors, which a real possibility. 

2. FORMULATIONS AND THEORETICAL SOLUTIONS 

2.1. EQUATION OF VIBRATION – GENERAL FORMULATION 

The system shown in fig. 1 is considered. It consists of two undeformable solids, 

the lower of which is a model of a block-type foundation while the upper one is  

a model of a machine mounted on it. The foundation is sunk in the ground at depth h.  

A case when the ground is homogenous and a case when it consists of two different 

layers with respectively height hg and hd are considered. There is a set of vibration 

dampers (viscoelastic constraints). 

 

Fig. 1. Model of block-type foundation sunk in ground and machine resting on foundation:  

a) front view, b) top view, c) side view 

The vibration of the system is described in the generalized coordinates basis 
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where (fig. 1): T T
1 6 1 6 [q , ,q ] ,    [g , ,g ]   b mq g  

The equation of vibration has this form 

     f ( ) t  B q C q K q F . (2) 

The foundation-machine system inertia matrix has the block form 
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Block-type foundation inertia matrix Bb in basis qb, has this well-known form 
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where: m – the mass of the foundation block, Sxy – a static moment of the foundation 

block mass relative to a plane defined by axes x y,  Dx – a moment of deviation of the 

foundation block mass relative to planes  intersecting along axis x,  Jx – a moment of 

inertia of the foundation block mass relative to axis x. 

Inertia matrix Bm of the solid being the machine model has also form (4) with sub-

script (m) used instead of subscript (b). 

The foundation-machine system stiffness matrix is written in basis q as follows 

 . w gK K K   (5) 

Soil subbase stiffness matrix Kg  is formulated assuming the same elastic half 

space model soil parameters – as in (Wolf, 1975). Assuming the ground to be homog-

enous, one gets 
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where:   

v

t

K 0

( )

0 K

 
 
 
 
 
 

xz

g b

yz

0 0

0 K 0 0
K q

0 0 K 0

0 0

, 
h hr

hr r

K K

K K

 
   

 
xz yzK K , 

 1 1
v o o oK  4 G r (1 n) 1  0,54 h r ,       

  
 1 1

h o o oK  8 G r (2 n) 1  h r ,   
 

 1 1
h o o oK  8 G r (2 n) 1  h r ,          3 1

t o o oK 16 / 3  G r 1  2,67 h r ,   

  
3

3 1 1 1
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 hr hK  h / 3 K .  

The above formulas hold true for oh / r  2.  

The symbols stand for: h – the depth of foundation of the block, or – the effective 

radius of the circular foundation footing,  – the Poisson ratio of the ground, Go– the 

shear modulus of the ground. 

Stiffness matrix ,  wK which follows from the vibration insulation, is defined by 

the relation 

 
T

wgrad E ( )  grad ( ½ )  w wq q K q K q   (7) 

where: 

  
2

w i mi biE  ½ k u –  u
i

   (8) 

Ew – the potential energy accumulated in the vibration insulation,  

umi – the local displacement of the machine in the location and along the direction of 

the constraint with stiffness, 

ki, ubi – the local displacement of the foundation block in the location and along the 

direction of the constraint with stiffness, 

ki, ki – the stiffness of the vibration damper. 

The first term in formula (11) is an exemplary matrix wK  for a flat system. 

In accordance with the Voigt-Kelvin hypothesis, the damping matrix is written as 

 1 2  w gC K K   (9) 
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where 1 2,  – dimensional structural damping parameters. 

Two types of dynamic load  f t  typical for dynamic machine interaction, i.e. 

a sum of harmonic loads and a series of short-term loads, are considered. Hence 

   s cf (A sin p A cosp )t t t    .  (10) 

2.2. CASES OF STRATIFIED SOIL WITHIN SIDE BACKFILL 

Practically such cases occur when groundwater is present in a stratum with thick-

ness hd  or when a frozen soil layer with thickness hg is present (fig. 1). In these cir-

cumstances stiffness matrix (6) needs to be corrected, which in the case of groundwa-

ter can be written in the simplified form (the symbols in brackets represent the height 

of the side backfill) 

       –   d dh h h g o o wK K K K  (11) 

where: gK – the corrected soil subbase stiffness matrix; oK – the stiffness matrix for 

naturally deposited soil (without groundwater);  wK – the stiffness matrix for soil in 

groundwater environment d0  h  h.   

3. NATURAL VIBRATION PROBLEM AND FORCED VIBRATION PROBLEM 

3.1. SOLUTION OF NATURAL VIBRATION PROBLEM FOR STRATIFIED SOIL 

Assuming that the system parameters  are deterministic, the equation for natural 

frequencies has this well-known form  

 det –    K B 0  

where  2 ,  and by solving the equation one determines the spectrum of angular 

natural frequencies 

   1 2 3  diag ,  ,  ,  .   ω
 

When the selected parameters, e.g. o w dG , G ,  h  are random (random variables 

treated as discrete sets), then using the realizations set method one can calculate the 

expected value  and variance  i    i  1,  2,  3,      from the relations 



M. ZOMBROŃ, W. MIRONOWICZ, M. BARTLEWSKA-URBAN, J. SMOLIŃSKA 

 

100 

    i iE[ ] ,  ,   P ,  ,  oj wk dl oj wk dl

j k l

G G h G G h    (12) 

    2 2
i i i( ,  ,  E[ ] )  P ,  ,  oj wk dl oj wk dl

j k l

G G h G G h     (13) 

where: Go – the shear modulus for naturally deposited soil (outside the groundwater 

zone or the frozen zone); Gw – the shear modulus for soil in the groundwater environ-

ment; P – probability density function.  

3.2. SOLUTION OF FORCED VIBRATION PROBLEM 

If the dynamic load is harmonic as in (10), then the solution of equation (2) can be 

written in the form 

 s csinp cosp .t t q q q  (14) 

The solution can be obtained from the relation 

 1o oq M F  (15) 

where:  
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When load parameters s cA , A ,  p  are random variables, p being continuous, the 

expected value and the correlation matrix for solution q can be presented in the form 

      
b

s c

a

E E[ sin p cos p ) | p  F  d  t t p p q q q   (16) 

    
b

T T
gg 1 2 s 1 c 1 s 2 c 2

a

,  E[ sin p cos p )( sin p cos p ) | p  F  d  t t t t t t p p   K q q q q  (17) 

where  F p  is a function defining the distribution of probability p in interval 

a,b .   
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4. NUMERICAL ANALYSIS 

4.1. INTRODUCTION 

The results presented in this section illustrate the above theoretical formulations. 

More extensive numerical analyses are needed to draw more general conclusions con-

cerning the problems considered here. 

The model of the foundation with the machine mounted on it, shown in figure 1 is 

considered. It is a system of two cuboidal solids joined together by a set of viscoelas-

tic constraints, with the bottom solid (the foundation model) sunk in the ground at 

depth h = 4 m. The bottom solid is a cuboid with dimensions: b = 6 m and the other 

dimensions – 4 m. The top solid is a cube with the side of 1.6 m and it is centrally 

located on the bottom solid and joined with the latter by means of 4 viscoelastic con-

straints with a height of 0.1 m and a stiffness of 12 MN/m, located in the corners. The 

density of the bottom solid is 32400 kg / m ,  and that of the upper solid is 
32500 kg / m .  The soil shear modulus is oG 15 MPa,  and the Poisson ratio is 

0,3.    

4.2. ANALYSES OF EIGEN PROBLEM FOR STRATIFIED SOIL;    d gh h h
 

 4.2.1. PRESENCE OF GROUNDWATER TO HEIGHT dh – DETERMINISTIC PROBLEM 

Figure 2 shows the variation in frequency    1, ,6i i    depending on height dh  
when there is no machine on the foundation. Shear modulus oG  of watered ground is 

assumed to amount to .w w oG w G 
 
ww is changing in range 0,2  0,75. The read off 

values of i are presented in table 1. 

 

Fig. 2. Variation in frequency i depending on height  hd when ww is fixed 
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Table 1. The range of changing of  natural frequencies 

Height, h  

m 
Frequency, i, rad/s 

1 2 3 4 5 6 

min (0) 27.49287 34.89198 38.17748 70.0195 81.06571 123.946 

max (3) 23.24242 30.26729 31.38613 57.8689 64.17313 99.61586 

 

It appears that the variation is rather low, particularly for the initial i.  

4.2.2. PRESENCE OF GROUND WATER  

TO HEIGHT hd  (FROZEN SOIL TO DEPTH hg) – RANDOM PROBLEM 

In order to examine the influence of the random characteristics of parameters 

d gh , h , the above flat foundation model. 

Figures 3 and 4 show the variation in expected value  E i  and standard devia-

tion i  of response 2
i i    when groundwater is present up to height hd. The fol-

lowing were assumed: w w o   G  w G ,  ww  0,2  0,75,   1 3 m,dh    a normal distri-

bution of random variable d hh  with   0,333.   Similar  E i  and i  results were 

obtained for the case when frozen ground occurs to depth hg, assuming: 

z z oG  w G ,  zw  5 15,  gh 0 0,7 m,  normal distribution g gh  with   0,117. 
 

The expected values and standard deviation of i  for the extreme values of ww, wz are 

shown in table 2. One can notice a slight influence of ww in the case of frequencies 

1 2,    and a strong influence in the case of 3.   

 

Fig. 3. Variation in expected value E(i) depending on ww 
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Fig. 4. Variation in standard deviation i  depending on ww  

Table 2. The range of changing of expected value and deviation of  eigenvalue 

 
Expected 

value, E(1) 

Expected 

value, E(2) 

Expected  

value, E(3) 

Standard 

deviation, 1 

Standard 

deviation, 2 

Standard 

deviation, 3 

Ww = 0.20 742.01 751.36 7903.2 31.18 81.5 322.27 

Ww = 0.75 1735.78 1488.98 14283.16 55.08 26.81 963.74 

Wz = 5 2013.02 2308.21 21281.43 93.13 160.23 1746.51 

Wz = 15 2716.15 3420.42 35276.08 325.95 499.42 6162,29 

5. CONCLUSION 

This study is devoted to atypical practical engineering problems relating to the dy-

namics of block-type foundations for machines. Firstly, these are cases when stratified 

soil occurs within the side backfill, i.e. groundwater extending up to a certain height. 

A vibration equation which takes into account the above phenomena has been formu-

lated. Two types of dynamic loads most common in engineering practice, 

i.e. harmonic loads and a series of short-term loads, were considered. Solutions of the 

natural vibration equation and the forced vibration equation have been formulated for 

the deterministic range and under the assumption that the selected parameters are 

random variables. Exemplary results of numerical analyses are reported. It emerges 

from them that the analyzed phenomena may cause significant changes in the dynamic 

responses of the system. However, much more extensive numerical analyses need to 

be carried out in order to draw more general conclusions. 
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