120.55
ICV 2016
8
MNiSW
CC BY-NC 3.0 Polska
 
 

COMBINED EFFECT OF SILICA FUME AND ADDITIVE ON THE BEHAVIOR OF HIGH PERFORMANCE CONCRETES SUBJECTED TO HIGH TEMPERATURES

Nadia Tebbal 1,  
 
1
Geomaterials Development Laboratory, Civil Engineering Department, Faculty of Technology, M’sila University, M’sila ( 28000), Algeria.
2
Geomaterials Development Laboratory, Civil Engineering Department, Faculty of Technology, M’sila University, M’sila ( 28000), Algeria
Mining Science 2017;24:129–145
KEYWORDS:
TOPICS:
ABSTRACT:
This study examines the effect of the additions of silica fume and super plasticizer on the mechanical performance of high performance concretes at high temperatures. The tested concretes are formulated with 5% silica fume and two dosages of super plasticizers in the ratio of (2%, 2.5%) the weight of cement after having been exposed to four maximum temperatures, 200 °C, 400 °C, 600 °C and 900 °C without intermediate level, for a ripening cycle 24 hours in total. The results obtained show that the mechanical resistance at 28 day increases with the degree of temperature compared to that measured at 20 °C. On the contrary, a clear decrease is observed between 600 °C and 900 °C. However, material composition seems to have great influence on the mechanical strength.
CORRESPONDING AUTHOR:
Zine El Abidine Rahmouni   
Geomaterials Development Laboratory, Civil Engineering Department, Faculty of Technology, M’sila University, M’sila ( 28000), Algeria., BP. 819 RP M'sila 28000, 28000 M'sila, Algeria
 
REFERENCES (40):
1. HADJAB, H., THIMUS, J .F., CHABAAT , M. (2010). Comparative study of acoustic emission and scanning microscope to evaluate fracture process zone in concrete beams, Journal of Materials in Civil Engineering , 1156-1163. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000121.
2. BAZANT, Z.P., JIRASEK, M. (1994). Non local model based on crack interactions: A localization study, Journal of Engineering Materials & Technology (ASME) 116(1994) 256-259.
3. BURLION, N., SKOCZYLAS, F., DUBOIS, T., 2003. Dubois. Induced anisotropic permeability due to drying of concrete, Cement and Concrete Research 679-687. https://doi.org/10.1016/S0008-8846(02)01039-6.
4. GAMBAROVA, P.G., FERRO, G., PLIZZARI, G.A. (2007). Proceedings of the 6th international confer-ence on fracture mechanics of concrete and concrete structures, 1723 -1728, Taylor & Francis, London.
5. DWAIKAT, M.B., KODUR, V.K.R. (2009). Hydro thermal model for predicting fire- induced spalling in concrete structural systems, Fire Safety Journal, Vol 44, Issue 3, 425-434. https://doi.org/ 10.1016/j.firesaf.2008.09.001.
6. BAZANT, Z.P., KAPLAN ,M.F. (1996) .Concrete at high temperatures, Material properties and mathe-matical models, Longman House, Burnt Mill, England.
7. MALHOTRA, V.M., WILSON , H.S., K.E., PAINTER. (1989). Performance of gravel stone concrete incorporating silica fume at elevated temperatures, Proceedings of 1989 Trondheim (Norway) Con-ference, 1051-1076.
8. AHMAD ,A.H., ABDULKAREEM ,O.M.( 2010). Effect of high temperature on mechanical properties of concrete containing admixtures, Al-Rafidain Engineering, Vol. 18 No.4.
9. DIEDERICHS , JUMPPANEN, U. M., PENTALLA .(1992). Behaviour of high strength concrete at elevated temperatures, Espoo 1989. Helsinki University of Technology, Department of structural En-gineering, Report 92 p 72.
10. PAPAYIANNI ,J., VALIASIS ,T. (1991).Residual mechanical proprieties of heated concrete incorporating different pozzolanic materials, Materials and Structure, Vol. 24, Issue 2, 115-121. https://link.springer.com/article/10.1007/BF02472472.
11. YÜZER ,N., AKÖZ, F., ÖZTÜRK , L. (2004). Compressive strength – color change relation in mortars at high temperature, Cement and Concrete Research, Vol 34, Issue 10, 1803-1807. https://doi.org/ 10.1016/j.cemconres.2004.01.015.
12. SIDDIQUE, R ., KHAN, M.I. (2011).Silica fume , Supplementary Cementing Materials, pp 67-119, Part of the Engineering Materials book series (ENG.MAT., vol. 37). https://link.springer.com/chapter/ 10.1007/978-3-642-17866-5_2.
13. NF EN 933-1., 2006. Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1: Détermination de la granularité - Analyse granulométrique par tamisage.
14. ASTM E 119-00 a . Standard test methods for fire test of building construction and materials. American National Standards Institute, Committee E05; 2000.
15. NF EN 12390-4 EN 12390-5., 009. Essai pour béton durci, Partie 5: Résistance à la flexion sur éprouvettes.
16. NF EN 12390-5 EN 12390-5., 2009. Essai pour béton durci, partie 5: résistance à la flexion sur éprouvettes,.
17. AFPC-AFREM Groupe de travail Durabilité des bétons (1998). Recommended test methods for measuring the parameters associated to durability. Proceedings des Journées Techniques AFPC-AFREM : Durabilité des Bétons, Dec. 11-12.
18. BESSA , A. (2004). Etude de la contribution des additions minérales aux propriétés physiques, mécaniques et de durabilité des mortiers, Ph.D. Thesis, Université de Cergy, Pontoise, France. http://biblioweb.u-cergy.fr/theses/04CERG0305.pdf.
19. RAHMOUNI, Z., TEBBAL, N. (2014). Influence de la nature des granulats sur le comportement rhéologique du béton à hautes températures, MATEC Web of Conferences, Vol 11,01010 (2014).
20. https://doi.org/10.1051/matecconf/20141101010.
21. TEBBAL, N., RAHMOUNI, Z., BELAGRAA, L. (2016). Combined effect of granulated slag and silica fume on the characteristics of high performance concrete, International Review of Civil Engineering (I.RE.C.E.), Vol. 7, N°. 2. DOI: https://doi.org/10.15866/irece.v7i2.9039.
22. TEBBAL ,N., RAHMOUNI , Z. (2016). Influence of local sand on the physic mechanical comportment and durability of high performance concrete, Advances in Civil Engineering,Vol. 2016, Article ID 3897064, 10 pages. http://dx.doi.org/10.1155/2016/3897064.
23. NOUMOWÉ. A., (2001). Study of high strength concretes at raised temperature up to 200°c: thermal gradient and mechanical behaviour, 16th International Conference on Structural Mechanics in Reactor Technology 2001 (smirt 16), Vol 1, Washington, DC, USA.
24. TSYMBROVSKA.(2015). Effect of heating–cooling cycles on transient creep strain of high performance, high strength and ordinary concrete under service and accidental conditions materials and struc-tures, Vol. 48, Issue 5, 1561-1579,1998. https://link.springer.com/article/10.1617/s11527-014-0254-2?no-access=true.
25. DIAS, W. P. S., KHOURY, G. A., SULLIVAN, P. J. E.( 1190). Mechanical Properties of Hardened Cement Paste Exposed to Temperatures up to 700°C (1292°F)", ACI Materials Journal, vol. 87, N°2, 160-166. ttps://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/1981.
26. KALIFA, P., CHENE, G., GALLE, C., (2001). High-temperature behaviour of HPC with polypropylene fibres from spalling to microstructure, Cement and Concrete Research , Vol 31, Issue 10, 1487-1499 . https://doi.org/10.1016/S0008-8846(01)00596-8.
27. BURLION ,N., SKOCZYLAS ,F., DUBOIS, T., (2003) . Induced anisotropic permeability due to drying of concrete. Cement and Concrete Research, Vol 33, Issue 5, 679-687. https://doi.org/10.1016/S0008-8846(02)01039-6.
28. KHAN, M. S., ABBAS,H., Performance of concrete subjected to elevated temperature, European Journal of Environmental and Civil Engineering, Vol 20, Issue 5 . http://dx.doi.org/10.1080/ 19648189. 2015.1053152.
29. CASTILLO ,C ., DURRANI ,AJ.(1990). Effect of transient high temperature on high strength concrete,.
30. Vol 87, Issue 1, ACI Structural Journal, 47-53.
31. PIASTA, J., SAWICZ ,Z., RUDZINSKI ,L. (1984). Changes in the structure of hardened cement paste due to high temperature, Matériaux et Construction, July, Vol .17, Issue 4, 291–296. https://link.springer.com/article/10.1007/BF02479085.
32. HAGER, I. (2013). Behaviour of cement concrete at high temperature, Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 145.
33. https://www.researchgate.net/publication/237857451_Behaviour_of_cement_concrete_at_high_temperature. DOI: 10.2478/bpasts-2013-0013.
34. NONNET, E., LEQUEUX , N., BOCH, P. (1999). Elastic properties of high alumina cement cas tables from room temperature to 1600°C, Journal of the European Ceramic Society, Vol 19, Issue 8, 1575-1583 .June. https://doi.org/10.1016/S0955-2219(98)00255-6.
35. SRINIVASA REDDY, V., SESHAGIRI RAO, M V. (2013). Studies on Bacterial Concrete Exposed to Elevated Temperatures and Thermal Cycles, IRACST – Engineering Science and Technology: An In-ternational Journal (ESTIJ), ISSN: 2250-3498, Vol.3, No.1.
36. SHA, W., O'NEILL ,EA., GUO ,Z. (1999 ). Differential scanning study of ordinary Portland cement, Cement and Concrete Research , Vol 29, Issue 9, 1487-1489 . https://doi.org/10.1016/S0008-8846(99)00128-3.
37. PERSY, JP. , Deloye FX.( 1986). Investigations sur un ouvrage en béton incendiée, Bulletin des laboratoires des Ponts et Chaussées, Vol. 145 :108-114. https://trid.trb.org/view.aspx?id=1031700.
38. PLATRET , G.( 2002). Suivi de l'hydratation du ciment et de l'évolution des phases solides dans les bétons par analyse thermique, caractéristiques microstructurales et propriétés relatives à la durabilité des bétons. Méthodes de mesure et d'essai de laboratoire. In Méthode d'essai N°58, Laboratoire Central des Ponts et Chaussées.
39. TUFAIL ,M., SHAHZADA, K., GENCTURK, B. (2017). Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete, International Journal of Concrete Structures and Materials Vol.11, No.1, pp.17–28 . https://link.springer.com/article/10.1007/s40069-016-0175-2.
40. KHOURY, G. A. ( 1992). Compressive strength of concrete at high temperatures: a reassessment Magazine of Concrete Research, Vol 44, Issue 161, 291-309. https://doi.org/10.1680/macr.1992. 44.161.291.
Copy url
Share
 
 
Sign up for email alerts
 
eISSN:2353-5423
ISSN:2300-9586