Examples of the Knothe-Budryk theory parameter determination under complex geological and mining conditions
More details
Hide details
Central Mining Institute
Corresponding author
Bartosz Apanowicz   

Central Mining Institute
Mining Science 2022;29:19-32
As is characteristic of every theoretical model, its application necessitates the adoption of appropriate parameters. Adopting incorrect parameters leads to erroneous results. This also concerns the application of the Knothe-Budryk theory of rock mass movement. The complexity of the geological and mining conditions means that the a priori adoption of the appropriate parameters requires analysing the measured deformation factors. Geodesic measurements are performed for this purpose, which apart from enabling deformation prediction control, also serve to provide a posteriori parameter determination, which is subsequently used to predict the deformation induced by mining exploitation conducted under analogous conditions. The article presents the determination process and results of the following Knothe-Budryk theory parameters: the extraction coefficient (a), the rock mass parameter (tgβ), the offset of the inflection point (p) and the coefficient of influence deviation depending on the inclination of Carboniferous strata (k), based on two examples of exploitation. The examples are characterised by diverse geological and mining conditions. In the first example, the panels exhibit varied shape and dimensions, and are located on two sides of a trough, which has resulted in a deviation of the deformation in two opposite directions. The second example presents an analysis of deformations induced by the exploitation of one longwall located at a great depth of over 1000 m, on a tilted side of a trough and within an area exhibiting a diverse degree of prior mining.
Białek J., 2003. Algorytmy i programy komputerowe do prognozowania deformacji terenu górnicze-go, Silesian University of Technology, Gliwice, Poland.
Białek J., Mierzejowska A., 2012. Oszacowanie dokładności parametrów tgβ, Aobr, a, wyznaczonych na podstawie pomiarów niepełnych niecek obniżeniowych, Przegląd Górniczy, Vol. 68, no 8, pp. 180–184.
Ghabraie B., Ren G., Smith J., 2017. Characterising the multi-seam subsidence due to varying mining configuration, insights from physical modelling. International Journal of Rock Mechanics and Mining Sciences, Vol. 93, pp. 269–279.
Jędrzejec E., 2002. 32-bitowa aplikacja Szkody 4.0 do prognozowania poeksploatacyjnych deforma-cji górotworu. Conference entitled „Problemy ochrony terenów górniczych” Scientific works of Central Mining Institute, no 41, pp. 193–200.
Jiang Y., Misa R., Tajduś K., Sroka A., 2020. A new prediction model of surface subsidence with Cauchy distribution the coal mine of thick topsoil condition. Archives of Mining Sciences, Vol. 65, Issue 1, pp. 147-158 .
Knothe S., 1953. Równanie profilu ostatecznie wykształconej niecki osiadania. Archiwum Górnictwa.
i Hutnictwa, T. 1, z. 1, s. 22–38.
Knothe S., 1984. Prognozowanie wpływów eksploatacji górniczej. Pub. „Śląsk”, Katowice, Poland.
Kowalski A., 2007. Nieustalone górnicze deformacje powierzchni w aspekcie dokładności prognoz. Scientific works of Central Mining Institute, no 871.
Kowalski A., Jędrzejec E., 2015. Influence of subsidence fluctuation on the determination of mining area curvatures. Archives of Mining Sciences, Vol. 60, Issue 2, pp. 487 – 505.
Kowalski A., 2020. Deformacje powierzchni na terenach górniczych kopalń węgla kamiennego. Central Mining Institute, Katowice, Poland.
Kratzsch H., 2008. Bergschadenkunde. e. v. Auflage 5. Bochum, Deutscher Markscheider-Verein.
Kwinta A., 2012. Procedura wyznaczania parametrów teorii Knothego. Ochrona Terenów Gór-niczych. Collective work edited A. Kowalski, Central Mining Institute, Katowice, Poland.
Liua H., Hu X., 2000. Improved prediction of differential subsidence caused by underground mining. International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp 615–627.
Mierzejowska A., 2010. Wpływ liczby i usytuowanie punktów pomiarowych względem pola eksploa-tacyjnego na dokładność wyznaczania wartości parametrów modelu opisującego obniżenie terenu górniczego. Silesian University of Technology, PhD thesis, Gliwice, Poland.
Mierzejowska A., 2014. Modelowanie wpływu wielkości błędów średnich przyjmowanych wartości parametrów teorii wpływów na błąd średni prognozy obniżeń, nachyleń i krzywizn terenu górni-czego. Przegląd Górniczy, Vol. 70, no 8, pp. 171–176.
Ostrowski J., 2015. Deformacje powierzchni terenu górniczego. Publishing and Printing Agency Art-Tekst, Cracow, Poland.
Popiołek E., 2009. Ochrona Terenów Górniczych. AGH University of Science and Technology, Cra-cow, Poland.
Sroka A., 1999. Dynamika eksploatacji górniczej z punktu widzenia szkód górniczych. IGSMiE Polish Academy of Sciences, Cracow, Poland.
Whittaker D.N., Reddish D.J., 1989. Subsidence. Occurrence, Prediction and Control. Amsterdam, Oxford, New York, Tokyo, Elsevier.
Yan J., Lun Y., Yue J., Preuβe A., Sroka A., 2018. The application and development of Knothe in-fluence function in China. Transactions of the Strata Mechanics Research Institute, Vol. 20, no 1, pp. 115–122.
Zhu H., He F., Fan Y., 2018. Development mechanism of mining-induced ground fissure for shallow burial coal seam in the mountainous area of southwestern China: a case study. Acta Geodynamica et Geomaterialia, Vol. 15, No. 4, pp. 349–362.
Zhu H., He F., Zhang S., Yang Z., 2018. An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of south-western China a typical case study. Mineral Resources Management, Vol. 34, no 1, pp. 119–138.
Journals System - logo
Scroll to top