Frother critical coalescence concentration and dose in flotation of copper-bearing carbonaceous shale
 
More details
Hide details
CORRESPONDING AUTHOR
Danuta Szyszka   

Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław
 
Mining Science 2019;26:289–295
 
KEYWORDS
ABSTRACT
The paper presents the yield of carbon-and-cooper-bearing shale from the Legnica and Glogow Copper Basin flotation also called Kupferschiefer in the presence of ethylene, diethylene and trithylene glycol butyl ethers (C4E1, C4E2, C4E3) frothers characterized by frother normalized concentration that is ratio of the frother concentration, and its critical coalescence concentration expressed in different units. It was found that the oucome of flotation is identical provided that the frother concentration is expressed in milimoles per Mg.
 
REFERENCES (24)
1.
CHO Y.S., LASKOWSKI J.S., 2002a, Effect of flotation frothers on bubble size and foam stability, Int. J. Miner. Process., 2002, 64, 69–80.
 
2.
CHO Y.S., LASKOWSKI J.S., 2002b, Bubble coalescence and its effect on bubble size and foam stability, Canadian J. Chem. Eng., Vol. 80, 299–305.
 
3.
CZARNECKI J., MAŁYSA K., POMIANOWSKI A., 1982, Dynamic Frothability Index, J. Coll. Inter-face Sci., Vol. 86, 570–572.
 
4.
DRZYMALA J., BIGOSINSKI J., 1995, Collectorless flotation of sulfides occurring in the Fore-Sudetic copper minerals deposit of SW Poland, Mineralogia Polonica, 26 (1), 63–73.
 
5.
FINCH J.A., NESSET J., ACUNA C., 2008, Role of frother on bubble production and behaviour in flotation, Miner. Eng., 21, 949–957.
 
6.
GRAU R., LASKOWSKI J.S., HEISKANEN K., 2005, Effect of Frothers on Bubble Size, Int. J. Miner. Process., 225–233.
 
7.
GUPTA A.K., BANERJEE P.K., MISHRA A., SATISH P., PRADIP, 2007, Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation, Int. J. Miner. Process., 82, 126–137.
 
8.
KOWALCZUK P.B., 2013, Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers, Ind. Eng. Chem. Res., 52 (33), 11752–11757.
 
9.
KOWALCZUK P.B., BULUC B., SAHBAZ O., DRZYMALA J., 2014, In search of an efficient frother for pre-flotation of carbonaceous shale from the Kupferschiefer stratiform copper ore, Physicochem. Probl. Miner. Process., 50 (2), 835–840.
 
10.
LASKOWSKI J.S., 2004, Testing flotation frothers. Physicochemical Problems of Mineral Processing, 38, 13–22.
 
11.
LASKOWSKI J.S., TLHONE T., WILIAMS P., DING K., 2003, Fundamental properties of the polyoxypropylene alkyl eter flotation frothers, Int. J. Miner. Process., 72, 289–299.
 
12.
MALYSA K., CZUBAK-PAWLIKOWSKA J., POMIANOWSKI A., 1978, Frothing Properties of Solu-tions and Their Influence on the Floatability. Proc. 7th Int. Congress Surface Actives Substances, Moscow, Vol. 3, 513–520.
 
13.
MOYO P., GOMEZ C.O., FINCH J.A., 2007, Characterizing frothers using water carrying rate, Canadian Metallurgical Quarterly, Vol. 46, No. 3, 215–220.
 
14.
PACEK A.W., MAN C.C., NIENOW A.W., 1998, On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel, Chemical Engineering Science, 53, 11, 2005–2011.
 
15.
SZYSZKA D., DRZYMAŁA J., ŁUCZYŃSKI J., WILK K.A., PATKOWSKI J., 2006, Concentration of α-terpineol and (2-dodecanoyloxyethyl)trimethylammonium bromide required for prevention of air bubble coalescence in aqueous solutions, Physicochemical Problems of Mineral Processing, 40, 53–59.
 
16.
SZYSZKA D., DRZYMALA J., MIELCZARSKI E., MIELCZARSKI J., 2008, Entrainment of quartz in flotation tests with frothers, [In:] Proceedings of XXIV International Mineral Processing Congress, IMPC 2008, Beijing, China, 24–28 September 2008, ed. by Wang Dian Duo et al., Science Press, cop. 2008, Beijing, 1068–1073.
 
17.
SZYSZKA D., 2013, Critical Coalescence Concetration (CCC) as a parameter for evaluation of selected quaternary ammonium compounds, Mining Science, 20.
 
18.
SZYSZKA D., 2014, Critical Coalescence Concentration (CCC) for surfactants in aquerous solutions. Proceedings of International Mineral Processing Congress, IMPC 2014, October 20–24, Santiago, Chile.
 
19.
SZYSZKA D., SIWIAK M., KOWALCZUK P.B., 2014a, Kinetyka flotacji łupka miedzionośnego za pomocą eteru butylo-trójpropylenoglikolowego (C4P3), [w:] Łupek miedzionośny, Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wrocław, 65–69 (Kinetics of flotation of copper-bearing shale using triethylene glycol butyl ether (C4E3), [In:] Copper-Bearing Shale, Faculty of Geoengineering, Mining, and Geology, Wroclaw University of Technology, Wroclaw, 65–69).
 
20.
SZYSZKA D., PĄZIK P., ZWIERZCHOWSKA A., 2014b, Flotacja łupka miedzionośnego w obecności eterów butylowo-etylenoglikolowego i butylowo-dwuetylenoglikolowego, [w:] Łupek miedzionośny, Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wrocław, 103–106 (Flotation of copper-bearing share in the presence of ethylene glycol butyl ether and diethylene glycol butyl ether, [In:] Copper-Bearing Shale, Faculty of Geoengineering, Mining, and Geology, Wrocław University of Technology, Wroclaw, 103–106).
 
21.
SZYSZKA D., 2018, Critical Coalescence Concentration (CCC) for surfactants in aqueous solutions, Minerals, Vol. 8 (10), 431.
 
22.
WITECKI K., KOWALCZUK P.B., 2014, Wielkość flotujących ziarn łupka miedzionośnego w obecności spieniaczy, [w:] Łupek miedzionośny, J. Drzymała, P.B. Kowalczuk (red.), WGGG PWr, Wrocław, 83–90. (Size of flotating copper shale grains in the presence of frothers, [In:] Copper-Bearing Shale, Faculty of Geoengineering, Mining, and Geology, Wrocław University of Technology, Wroclaw, 83–90).
 
23.
ZHANG W., NESSET J.E., RAO R., FINCH J.A., 2012, Concentration (CCC)95-hydrophile-lipophile balance (HLB) relationship, Minerals, Vol. 2, 208–227.
 
24.
ZHANG W., NESSET J.E., RAO R., FINCH J.A., 2013, Characterizing Frothers through Critical Coalescence Concentration (CCC)95-Hydrophile-Lipophile Balance (HLB) Relationship, Minerals, Vol. 2, 208–227.
 
eISSN:2353-5423
ISSN:2300-9586