120.55
ICV
8
MNiSW
CC BY-NC 3.0 Polska
 
 

CHARACTERIZATION OF THE REACTIVITY OF MINERAL ADDITIONS BY DIFFERENT MICROSTRUCTURAL AND MECHANICAL APPROACHES

 
1
Department of Civil Engineering, Faculty of Technology, M.B.B. Batna2 University, 05000, Algeria
2
Laboratory of Geo-Materials development, Department of Civil Engineering, Faculty of Technology, M.B. M’sila University, 28000, Algeria
3
Laboratory :LRNAT, Department of Civil Engineering, Faculty of Technology, M.B.B. Batna2 University, 05000, Algeria
Mining Science 2018;25:143–160
KEYWORDS:
TOPICS:
ABSTRACT:
This paper presents an experimental study aimed at evaluating the reactivity of natural and industrial local mineral additions (pozzolan, slag and limestone) by different microstructural and mechanical approaches. Binary, ternary and quaternary cement compositions were prepared with partial replacement of the clinker by additions limited to 20%, according to CEM II / A cement specifications. The reactivity during the hydration process is characterized by the hydraulic power of the additions to react with the water and the hydrates of the cement and the pozzolanic capability of fixing the portlandite to form new mineral phases which contribute to the resistance as much as the hydrated products of cement. An experimental methodology was established for the reactivity illustration of the additions by a microstructural approach based on a study of the physicochemical and microstructural properties realized by X-ray diffraction (XRD), the scanning electron microscopy (SEM) on pastes. Further, thermogravimetric analysis (TGA), mercury microporosity (MIP) on mortars at 28 days of age was performed. A mechanical approach based on compressive strength at 2, 7 and 28 days to determine the activity index according to ASTM C 618 has been undertaken. The results obtained show a good correlation between the microporosity, X-ray diffraction and the resistance activity index, in particular for the slag, as for the thermogravimetric analysis that clearly confirms the pozzolanic activity of the pozzolan addition.
CORRESPONDING AUTHOR:
Bouglada Mohammed Salah   
Department of Civil Engineering, Faculty of Technology, M.B.B. Batna2 University, 05000, Algeria, Bouglada mohammed salah, 05000 Cite 1 nov AADL BOUZORANE -BATNA, Algeria
 
REFERENCES (33):
1. ABBAS Z., 2017, Case Studies in Construction Materials Study of heat of hydration of Portland cement used in Iraq, Case Studies in Construction Materials, Elsevier, Vol. 7, 154–162.
2. AÏTCIN P., 2001, Bétons Hautes Performances.
3. AMOURI C., 2009, Contribution à l’étude de l’influence des différents ajouts sur les propriétés des matrices cimentaires caractérisation, performances, durabilité, These de doctorat, Université Mentouri Constantine.
4. ASTM C618, 1993, Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
5. BADREDDINE A., 2004, Etude de la contribution des additions minerales aux proprietés physiques, meca-niques et de la durabilité des mortiers, Thèse de doctorat, Univ-Cergy-Pontoise, 101–236.
6. BARON J., 1996, Les additions normalisées pour les betons in les beton bases et données pour leur for-mulation, Association technique, industrie des liants hydrauliques, Edition Eyrolles, Paris.
7. BARRET P., MENETRIER D., COTTIN B.,1997, Study of silica-lime solution reactions, Cement and Concrete Research, Vol. 7, No. 1, 61–67.
8. BEHIM M., BEDDAR M., CLASTRES P., 2013, Reactivity of Granulated Blast Furnace Slag, Slovak Journal of Civil Engineering, Vol. 2, 7–14.
9. BEHIM M., 2005, Sous produits industriels et développement durable : réactivité, rôle et durabilité des laitiers d’el hadjar dans les matériaux a matrice cimentaire, These de doctorat. Université Badji Mokhtar – Annaba.
10. BIERNACKI. J.J., RICHARDSON M., STUTZMAN P., BENTZ D., 2002, Kinetics of Slag Hydration in the Pres-ence of Calcium Hydroxide, Journal of the American Ceramic Society, Vol. 85, No. 9, 2261–2267.
11. CARÉ S., LINDER R., BAROGHEL-BOUNY V., DE LARRARD F., CHARONNAT Y., 2000, Effet des additions minerales sur les proprietes d’usage des betons – Plan d’experience et analyse statistique, Etudes et recherches des laboratoires des ponts et chaussees-serie ouvrages d’art, 0A33, 108–115.
12. DRON R., 1978, L’activite pouzzolanique, Bull. Liaison Lab. Ponts Chauss, Vol. 93, 9–66.
13. EN 196-1, 2005, Methods of testing cement. Part 1: Determination of strength.
14. ITIM A., EZZIANE K., KADRI E.H., 2011, Compressive strength and shrinkage of mortar containing various amounts of mineral additions, Construction and Building Materials, Vol. 25, 3603–3609.
15. JCPDS, 1967, Joint committee on powder diffraction standards, ASTM, Philadelphia.
16. LAWRENCE P., CYR M., RINGOT E., 2005, Mineral admixtures in mortars effect of type, amount and fine-ness of fine constituents on compressive strength, Cement and Concrete Research, Vol. 35, No. 6, 1092–1105.
17. MAJUMDAR J.A., WEST L.M., LARNER J., 1977, Properties of glass fibres in cement environment, Journal of Materials Science, Vol. 12, No. 5, 927–936.
18. MASSAZZA F., COSTA U., 1979, Aspects of the Pozzolanic activity and properties of Pozzolanic cements, Il Cemento, Vol. 76, No. 1, 3–18.
19. MEJÍA DURÁN M., TORRES ACOSTA A., ARROYO CONTRERAS M., RENDÓN BELMONTE M., 2006, Characteriza-.
20. tion of Mortar with Mineral Additives, MRS Online Proceedings Library Archive, IMRC2013-S4B-P028, Vol. 1612, 1121.
21. MOUNANGA P., 2003, Étude Expérimentale Du Comportement De Pâtes De Ciment Au Très Jeune Âge : Hydratation, Retraits, Propriétés Thermophysiques, Thèse de doctorat, Université de Nantes, 1–245.
22. NACERI A., MESSAOUDENE I., 2006, Effet de l’activation mécanique du laitier de haut fourneau sur le Comportement mécanique du mortier, Lebanese Science Journal, Vol. 7, No. 2, 85–96.
23. NF EN 933-1, 1997, Essais pour déterminer les caractéristiques géométriques des granulats. Partie 1. Norme Européenne, AFNOR, Paris.
24. NF EN 933-2, 1996, Essais pour déterminer les caractéristiques géométriques des granulats. Partie 2. Norme Européenne, AFNOR, Paris.
25. NONAT A., 1994, Interactions between chemical evolution (hydration) and physical evolution (setting) in the case of tricalcium silicate, Materials and Structures, Vol. 27, No. 4, 187–195.
26. OUDJIT M., Oueld A.M., BELLAL A., ARROUDJ K., 2011, Comportement Rheologique Et Mecanique Des Mortiers à Base d’Ajouts Cimentaires, 8ème séminaire technique de Lafarge, Mercure, Alger, 3, 153–162.
27. RABEHI B., GHERNOUTI Y., DRISS M., 2014, Potential Use of Calcined Silt of Dam as a Pozzolan in Blended Portland Cement, International Journal of Concrete Structures and Materials, Vol. 8, No. 3,.
28. 259–268.
29. RAMEZANIANPOUR A., 1987, Engineering properties and morphology of pouzzolanic. Cement–concrete. PhD Thesis, University of Leeds.
30. SINGH R., GUPTA S., SAINI B., 2016, Effect of mineral and chemical admixtures on the properties of mortar and concrete, Indian Concrete Journal, Vol. 90, No. 3, 66–76.
31. TAYLOR H., 1997, Cement chemistry, 2nd ed., Thomas Telford, London.
32. UCHIKAWA H., HANEHARA S., HIRAO H., 1996, Influence of microstructure on the physical properties of concrete prepared by substituting mineral powder for part of fine aggregate, Cement and Concrete Research, Vol. 26, No. 1, 101–111.
33. VENUAT M., 1989, La pratique des ciments-mortiers et bétons. Tome 1: Caractéristiques des liants et des bétons, mise en oeuvre des coulis et mortiers, Ed. 2. Collection Moniteur, 277.
Copy url
Share
 
 
Sign up for email alerts
 
eISSN:2353-5423
ISSN:2300-9586