94,87
ICV 2015
8
MNiSW
 
 

FEASIBILITY OF ALKALI-ACTIVATED MINING WASTE FOAMED MATERIALS INCORPORATING EXPANDED GRANULATED CORK

Imed Beghoura 1  ,  
Haroon Ihsan 2,  
 
1
Centre of Materials and Building Technologies (C-MADE), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal.
2
Alsitek Limited, Peterborough, UK.
3
SOFALCA Sociedade Central de Produtos de Cortiça, Lda, Abrantes, Portugal
Mining Science 2017;24:7–28
KEYWORDS:
TOPICS:
ABSTRACT:
Abstract: Different combinations of mining waste mud, grounded waste glass, Portland cement, metakaolin and expanded cork were mixed together with alkaline activators (sodium silicate and sodium hydroxide solution) and as well aluminum powder or hydrogen peroxide to produce foamed lightweight materials. The size of the mineral materials is under 500 µm and expanded cork particles size is between 2 to 4 mm. The expanded cork added to the mixes changed between 10 to 40% volume of total solids. The influence of expanded cork on compressive strength was investigated. Precursors and activators were mixed together to produce a homogeneous mixture, which was placed into a cubic mold (40 x 40 x 40 mm3), and cured at a temperature of 60°C, for 24 hours. After curing process, samples without foaming agents achieved the maximum compressive strength of 14.7 and 19.5 MPa for 7 and 28 days respectively. The porosity was observed by the naked eye of large voids in a range of 4 mm in size. Microstructure analyses were carried on by SEM. Samples made with aluminum powder showed higher volume increase about 358% compared with samples made with hydrogen peroxide that presented a 141% volume increase. This preliminary study shows the feasibility to produce new improved lightweight foamed alkali activated materials incorporating expanded cork with potential applications in artistic, architectural, and historical heritage restoration.
CORRESPONDING AUTHOR:
Imed Beghoura   
Centre of Materials and Building Technologies (C-MADE), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal., University of Beira Interior (UBI),, 6201-001 Covilha, Portugal
 
REFERENCES:
1. A. Brás et al. 2013. “Cement-Cork Mortars for Thermal Bridges Correction . Comparison with Cement-EPS Mortars Performance” 49: 315–27. doi:10.1016/j.conbuildmat.2013.08.006.
2. Abdollahnejad, Z, F Pacheco-torgal, T Félix, W Tahri, and J Barroso Aguiar. 2015. “Mix Design , Properties and Cost Analysis of Fly Ash-Based Geopolymer Foam.” Construction and Building Materials 80 (May 2010). Elsevier Ltd: 18–30. doi:10.1016/j.conbuildmat.2015.01.063.
3. Aguilar, R Arellano, O Burciaga Díaz, and J I Escalante García. 2010. “Lightweight Concretes of Activated Metakaolin-Fly Ash Binders , with Blast Furnace Slag Aggregates.” Construction and Building Materials 24 (7). Elsevier Ltd: 1166–75. doi:10.1016/j.conbuildmat.2009.12.024.
4. Caijun. Shi et al. 2011. “New Cements for the 21st Century : The Pursuit of an Alternative to Portland Cement”. Cement and Concrete Research 41 (7). Elsevier B.V.: 750–63. doi:10.1016/j.cemconres. 2011.03.016.
5. Castro-gomes, J P, Abílio P Silva, Rafael P Cano, J Durán Suarez, and A Albuquerque. 2012. “Potential for Reuse of Tungsten Mining Waste-Rock in Technical-Artistic Value Added Products.” Journal of Cleaner Production 25. Elsevier Ltd: 34–41. doi:10.1016/j.jclepro.2011.11.064.
6. Castro Gomes et al. 2002. “Valorizacao_de_residuos_de_minas_em_pavi.pdf.”.
7. Davidovits, J. 2011. Geopolymer Chemistry and Applications 3rd Edition.
8. Delair, Stéphanie, Élodie Prud, Claire Peyratout, Agnès Smith, Philippe Michaud, Lilian Eloy, Emmanuel Joussein, and Sylvie Rossignol. 2012. “Durability of Inorganic Foam in Solution : The Role of Alkali Elements in the Geopolymer Network” 59: 213–21. doi:10.1016/j.corsci.2012.03.002.
9. Ehsan Ul Haq et al. 2015. “Microwave Synthesis of Thermal Insulating Foams from Coal Derived Bottom Ash,” no. February. doi:10.1016/j.fuproc.2014.10.017.
10. European. Comission. 2015. “European Commission, Press Release - Closing the Loop: Commission Adopts Ambitious New Circular Economy Package to Boost Competitiveness, Create Jobs and Generate Sustainable Growth.” Press Release, no. December.
11. Eurostat, Further, European Union, European Parliament, E C Article, Further Eurostat, Member States, E U Member States, E U Member States, and Member States. 2016. “Waste Statistics Main Statistical Findings Total Waste Generation” 2012 (September 2015).
12. F. Branco et al. 2006. “Utilização Da Cortiça Como Agregado Em Betões.pdf.”.
13. Feng, Junjie, Ruifang Zhang, Lunlun Gong, Ye Li, Wei Cao, and Xudong Cheng. 2015. “Development of Porous Fly Ash-Based Geopolymer with Low Thermal Conductivity” 65: 529–33. doi:10.1016/j.matdes.2014.09.024.
14. Gil, Luis. 1998. Cortiça: produção, tecnologia e aplicação, in: “Cork : Properties , Capabilities and Applications” 50 (6): 345–65. doi:10.1179/174328005X41168.
15. Helena Pereira. 1987. “The Cellular Structure of Cork from Quercus,” no. January. doi:10.1163/22941932-90001048.
16. Hwai-Chung Wu. 2007. “New Building Materials from Fly Ash-Based Lightweight Inorganic Polymer” 21: 211–17. doi:10.1016/j.conbuildmat.2005.06.052.
17. Indrek K. 2003. “Adsorption of Surfactants on Unburned Carbon in Fly Ash and Development of a Standardized Foam Index Test” 33: 2091–99. doi:10.1016/S0008-8846(03)00232-1.
18. J. Davidovits, Ancient and modern concretes: what is the real difference, Concrete International, December (1987) 23–38. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
19. J. Centeio. 2011. “Propriedades Físicas de Argamassa Geopolimérica de Lamas Residuais Das Minas Da Panasqueira.”.
20. J. L. Provis. 2009. Geopolymers - Structure, Processing, Properties and Industrial Applications Jhon L. Provis.pdf.
21. J. L. Provis. 2014. Alkali Activated Materials State of the Art Report.
22. Jochens, P. R. 1969. “Utilization of slags for the manufacture of cement”, Journal of the South African Institute of Mining and Metallurgy, 464–74.
23. Karade, Sukhdeo R, Mark Irle, and Kevin Maher. 2006. “Influence of Granule Properties and Concentration on Cork-Cement Compatibility,” 281–86. doi:10.1007/s00107-006-0103-2.
24. Kastiukas, Gediminas, Xiangming Zhou, and João Castro-gomes. 2016. “Development and Optimisation of Phase Change Material-Impregnated Lightweight Aggregates for Geopolymer Composites Made from Aluminosilicate Rich Mud and Milled Glass Powder.” Construction and Building Materials 110. Elsevier Ltd: 201–10. doi:10.1016/j.conbuildmat.2016.02.029.
25. Kearsley, E P, and P J Wainwright. 2001. “The Effect of High Fly Ash Content on the Compressive Strength of Foamed Concrete” 31: 0–7.
26. Kovalchuk, P V Krivenko Æ G Yu. 2007. “Directed Synthesis of Alkaline Aluminosilicate Minerals in a Geocement Matrix,” 2944–52. doi:10.1007/s10853-006-0528-3.
27. Krivenko, Pavel, and Georgiy Kovalchuk. 2015. “Achieving a Heat Resistance of Cellular Concrete Based on Alkali Activated Fly Ash Cements,” 599–606. doi:10.1617/s11527-014-0479-0.
28. Kühl. H. (1930) Zementchemie. Berlin, Germany. Verlag Technik, Band III; 1958 or Zement 19, in: A. Palomo, P. Krivenko, E. Kavalerova, O. Maltseva, A review on alkaline activation : new analytical perspectives, 64 (2014).
29. Li, Chao, Henghu Sun, and Longtu Li. 2010. “Cement and Concrete Research A Review : The Comparison between Alkali-Activated Slag ( Si + Ca ) and Metakaolin ( Si + Al ) Cements.” Cement and Concrete Research 40 (9). Elsevier Ltd: 1341–49. doi:10.1016/j.cemconres.2010.03.020.
30. Longhi, A, Erich D Rodríguez, Susan A Bernal, John L Provis, and Ana Paula. 2016. “Valorisation of a Kaolin Mining Waste for the Production of Geopolymers” 115. doi:10.1016/j.jclepro.2015.12.011.
31. M. Rebeiro et al. 2004. “Characterization of Lightweight Polymer Mortar Modified with Cork Granulates” 64: 2197–2205. doi:10.1016/j.compscitech.2004.03.006.
32. M.D. Roy. 1999. “Alkali-Activated Cements Opportunities and Challenges” 29: 249–54.
33. Malone, Philip G et al. 1985. “Potential applications of alkali activated alumino-silicate binders in millitary opperations”.
34. M. D. Roy, C.A. Langton, Studies of Ancient Concrete as Analogues of Cementitious Sealing Materials for a Repository in Tuff, LA- 11527-MS, Los Alamos National Laboratory, Los Alamos, NM, March 1989. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
35. M. D. Roy, et al. 1990 Wolfe-Confer, New rapid setting alkali activated cement compositions, MRS Proceedings, 179 (1990) 203–220. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
36. M. D. Roy, M.R. Silsbee, Alkali-activated materials: an overview, MRS Proceedings, 245 (1992) 153–164. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
37. M. D. Roy, R.I.A. Malek, Hydration of slag cement, progress in cement and concrete science and tech-nology, in: S.N. Ghosh, S.L. Sarkar, S. Harsh (Eds.), Mineral Admixtures in Cement and Concrete, Volume. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254. 4, ABI Books Pvt. Ltd., New Delhi, India, 1993, pp. 84–117.
38. Marcos, Diogo, and Paiva Alves. 2014. “Non - Structural Lightweight Concrete Produced with Volcanic Scoria from São Miguel Island,” 1–12.
39. Masi, Giulia, William D A Rickard, Les Vickers, Maria Chiara, and Arie Van Riessen. 2014. “A Comparison between Different Foaming Methods for the Synthesis of Light Weight Geopolymers.” Ceramics International 40 (9). Elsevier: 13891–902. doi:10.1016/j.ceramint.2014.05.108.
40. Matos, Ana Mafalda, Sandra Nunes, and Joana Sousa-coutinho. 2015. “Cork Waste in Cement Based Materials.” JMADE 85. Elsevier B.V.: 230–39. doi:10.1016/j.matdes.2015.06.082.
41. Mustafa, Bakri. 2012. “Fly Ash-Based Geopolymer Lightweight Concrete Using Foaming Agent,” 7186–98. doi:10.3390/ijms13067186.
42. Narayanan, N, and K Ramamurthy. 2000. “Structure and Properties of Aerated Concrete : A Review” 22: 321–29.
43. Nath, Pradip, and Prabir Kumar Sarker. 2015. “Use of OPC to Improve Setting and Early Strength Properties of Low Calcium Fly Ash Geopolymer Concrete Cured at Room Temperature.” CEMENT AND CONCRETE COMPOSITES 55. Elsevier Ltd: 205–14. doi:10.1016/j.cemconcomp.2014.08.008.
44. P. Duxon et al. 2007. “Geopolymer Technology : The Current State of the Art,” no. 4: 2917–33. doi:10.1007/s10853-006-0637-z.
45. P. Hlavácek et al. 2015. “Inorganic Foams Made from Alkali-Activated Fly Ash : Mechanical , Chemical and Physical Properties” 35: 703–9. doi:10.1016/j.jeurceramsoc.2014.08.024.
46. Pacheco. Torgal. 2006. “Desenvovimento de ligantes obtidos por activação alcalina de lamas residuais das minas da Panasqueira.”, Tese de Doutoramento, Universidade da Beira Interior. Portugal.
47. Pacheco. Torgal. 2008a. “Adhesion Characterization of Tungsten Mine Waste Geopolymeric Binder . Influence of OPC Concrete Substrate Surface Treatment” 22: 154–61. doi:10.1016/j.conbuildmat.2006.10.005.
48. Pacheco. Torgal. 2008b. “Investigations of Tungsten Mine Waste Geopolymeric Binder : Strength and Microstructure” 22: 2212–19. doi:10.1016/j.conbuildmat.2007.08.003.
49. Pacheco. Torgal. 2008c. “Properties of Tungsten Mine Waste Geopolymeric Binder” 22: 1201–11. doi:10.1016/j.conbuildmat.2007.01.022.
50. Pacheco. Torgal. 2009a. “Tungsten Mine Waste Geopolymeric Binder : Preliminary Hydration Products Investigations” 23: 200–209. doi:10.1016/j.conbuildmat.2008.01.003.
51. Pacheco. Torgal. 2009b. “Utilization of Mining Wastes to Produce Geopolymeric Binders.” In , 267–91.
52. Palomo, A, M W Grutzeck, and M T Blanco. 1999. “Alkali-Activated Fly Ashes A Cement for the Future” 29: 1323–29.
53. Palomo, A, P Krivenko, E Kavalerova, and O Maltseva. 2014. “A Review on Alkaline Activation : New Analytical Perspectives” 64 (31).
54. Palomo, A. F.P. Glasser, British Ceramic Transactions and Journal 91, (1992) 107–112. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
55. Panesar, D K, and B Shindman. 2012. “The Mechanical , Transport and Thermal Properties of Mortar and Concrete Containing Waste Cork.” Cement and Concrete Composites 34 (9). Elsevier Ltd: 982–92. doi:10.1016/j.cemconcomp.2012.06.003.
56. Prud, E, P Michaud, E Joussein, C Peyratout, A Smith, and S Rossignol. 2011. “In Situ Inorganic Foams Prepared from Various Clays at Low Temperature.” Applied Clay Science 51 (1–2). Elsevier B.V.: 15–22. doi:10.1016/j.clay.2010.10.016.
57. Purdon, A. (1940) The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry. 59, 191–202. in: A. Palomo, P. Krivenko, E. Kavalerova, O. Maltseva, A review on alkaline activation : new analytical perspectives, 64 (2014).
58. R. Ghosh et al. 2013. “Fly-Ash Geopolymer Concrete as Future Concrete” 6 (3): 260–71.
59. Rickard, William D A, and Arie Van Riessen. 2014. “Performance of Solid and Cellular Structured Fly Ash Geopolymers Exposed to a Simulated Fire.” Cement and Concrete Composites 48. Elsevier Ltd: 75–82. doi:10.1016/j.cemconcomp.2013.09.002.
60. R. Feret, Slags for the manufacture of cement, Rev Mater Constr Trav Publish (July 1939), in D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
61. Sanjayan, Jay G, Ali Nazari, Lei Chen, and Giang Hoang Nguyen. 2015. “Physical and Mechanical Properties of Lightweight Aerated Geopolymer.” Construction and Building Materials 79. Elsevier Ltd: 236–44. doi:10.1016/j.conbuildmat.2015.01.043.
62. Shi, Caijun et al. 2006. Alkali Activated Cements and Concretes.
63. Strozi, Marcelo, Paolo Colombo, and Márcio Raymundo. 2014. “Geopolymer Foams by Gelcasting.” Ceramics International 40 (4). Elsevier: 5723–30. doi:10.1016/j.ceramint.2013.11.011.
64. Vaou, V, and D Panias. 2010. “Thermal Insulating Foamy Geopolymers from Perlite.” Minerals Engineering 23 (14). Elsevier Ltd: 1146–51. doi:10.1016/j.mineng.2010.07.015.
65. V.D. Glukhovsky, Soil Silicates, Gosstroi Publishers, Kiev, Ukraine, 1959. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254.
66. V.D. Glukhovsky, Ancient, modern and future concretes, in: P.V. Krivenko (Ed.), Alkaline Cements and Concretes, Proceedings of the 1st International Conference, VIPOL Stock Co., Kiev, Ukraine, 1994, pp. 1–9. in: D.M. Roy, Alkali-activated cements Opportunities and challenges, 29 (1999) 249–254. 4, ABI Books Pvt. Ltd., New Delhi, India, 1993, pp. 84–117.
67. Wang, Shao-dong, and Karen L Scrivener. 1995. “Hydration products of alkali activated slag cement" 25 (3): 561–71.
68. Yang. k et al. 2013. “Production and Properties of Foamed Reservoir Sludge Inorganic Polymers.” Cement and Concrete Composites 38. Elsevier Ltd: 50–56. doi:10.1016/j.cemconcomp.2013.03.017.
69. Zahra abdollahnejade. 2016. “Development of Foam One-Part Geopolymers,” no. July.
70. Zhang, Lianyang, Saeed Ahmari, and Jinhong Zhang. 2011. “Synthesis and Characterization of Fly Ash Modified Mine Tailings-Based Geopolymers.” Construction and Building Materials 25 (9). Elsevier Ltd: 3773–81. doi:10.1016/j.conbuildmat.2011.04.005.
71. Zhang, Zuhua, John L Provis, Andrew Reid, and Hao Wang. 2014. “Geopolymer Foam Concrete : An Emerging Material for Sustainable Construction.” Construction and Building Materials 56. Elsevier Ltd: 113–27. doi:10.1016/j.conbuildmat.2014.01.081.
72. Zhu, Mengguang, Ru Ji, Zhongmin Li, Hao Wang, Lili Liu, and Zuotai Zhang. 2016. “Preparation of Glass Ceramic Foams for Thermal Insulation Applications from Coal Fly Ash and Waste Glass” 112: 398–405. doi:10.1016/j.conbuildmat.2016.02.183.
Copy url
Share
 
 
Sign up for email alerts
 
 
eISSN:2353-5423
ISSN:2300-9586