94,87
ICV 2015
8
MNiSW
 
 

A REVIEW ON MINERAL WASTE FOR CHEMICAL-ACTIVATED BINDERS: MINERALOGICAL AND CHEMICAL CHARACTERISTICS

Naim Sedira 1  ,  
 
1
Centre of Materials and Building Technologies (C-MADE/UBI), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal
2
Centre of Materials and Building Technologies (C-MADE/UBI), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal.
3
Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
4
Department of Materials Technology and Industrial Processes, Universidade Feevale, RS 239 n° 2755, Novo Hamburgo, RS, Brazil.
Mining Science 2017;24:29–58
KEYWORDS:
TOPICS:
ABSTRACT:
This review discusses the potential of alkali-activated materials obtained from mineral waste. A brief histori-cal background on alkali-activated materials is presented. Recent advances in the development of binders obtained from mineral wastes and alkali-activated solutions are described. The scope of this state of the art review is to identify current knowledge in support that mineral waste can be used for the production of alkali-activated binders. In addition, this review identifies the chemical activators that can be effectively utilized for such purposes in the age when wastes are still viewed by industry as disposable. Some mineral wastes which are discussed can be viewed as a new resource for recycling and recovery which will offer important economic and social benefits.
CORRESPONDING AUTHOR:
Naim Sedira   
Centre of Materials and Building Technologies (C-MADE/UBI), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal, Calçada Fonte do Lameiro, 6201-001 Covilhã, Portugal
 
REFERENCES:
1. Ahmari, S., & Zhang, L. (2013). Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Construction and Building Materials, 40, 1002–1011. http://doi.org/10.1016/ j.conbuildmat.2012.11.069.
2. Alonso, S., & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Materials Letters (Roč. 47). http://doi.org/10.1016/S0167-577X(00)00212-3.
3. Antunes Boca Santa, R. A., Bernardin, A. M., Riella, H. G., & Kuhnen, N. C. (2013). Geopolymer synthetized from bottom coal ash and calcined paper sludge. Journal of Cleaner Production, 57, 302–307. http://doi.org/10.1016/j.jclepro.2013.05.017.
4. Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. http://doi.org/10.1016/j.conbuildmat.2013.01.018.
5. Bernal, S. A., Rodriguez, E. D., Mejia De Gutiérrez, R., Provis, J. L., & Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste and Biomass Valorization, 3(1), 99–108. http://doi.org/10.1007/s12649-011-9093-3.
6. Bob Wilson, & F. Brian Pyatt. (2006). Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Science of the Total Environment, 370, 401–408. http://doi.org/10.1016/j.scitotenv.2006.07.026.
7. Burciaga-Díaz, O., Díaz-Guillén, M. R., Fuentes, A. F., & Escalante-Garcia, J. I. (2013). Mortars of alkali-activated blast furnace slag with high aggregate:binder ratios. Construction and Building Materials, 44, 607–614. http://doi.org/10.1016/j.conbuildmat.2013.03.057.
8. Cao, Z., Cao, Y., Dong, H., Zhang, J., & Sun, C. (2016). Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. International Journal of Mineral Processing, 146, 23–28. http://doi.org/10.1016/j.minpro.2015.11.008.
9. Castro-Gomes, J. P., Silva, A. P., Cano, R. P., Durán Suarez, J., & Albuquerque, A. (2012). Potential for reuse of tungsten mining waste-rock in technical-artistic value added products. Journal of Cleaner Production, 25, 34–41. http://doi.org/10.1016/j.jclepro.2011.11.064.
10. Chen, C., Gong, W., Lutze, W., Pegg, I. L., & Zhai, J. (2010). Kinetics of fly ash leaching in strongly alkaline solutions. Journal of Materials Science, 46, 590–597. http://doi.org/10.1007/s10853-010-4997-z.
11. Chen, Z., Liu, Y., Zhu, W., & Yang, E.-H. (2016). Incinerator bottom ash (IBA) aerated geopolymer. Construction and Building Materials, 112, 1025–1031. http://doi.org/10.1016/ j.conbuildmat.2016.02.164.
12. Cherdsak Suksiripattanapong, Horpibulsuk, S., Pimsin Chanprasert, Patimapon Sukmak, & Arulrajah, A. (2015). Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Construction and Building Materials, 82, 20–30. http://doi.org/ 10.1016/j.conbuildmat.2015.02.040.
13. Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303–310. http://doi.org/10.1016/j.conbuildmat.2014.04.010.
14. Chindaprasirt, P., Homwuttiwong, S., & Jaturapitakkul, C. (2007). Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Construction and Building Materials, 21, 1492–1499. http://doi.org/10.1016/j.conbuildmat.2006.06.015.
15. Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29, 539–543. http://doi.org/10.1016/j.wasman.2008.06.023.
16. Christensen, R. M., Subsidiary, A., & Brace, H. (1982). THEORY OF VISCOELASTICITY An Introduction (2 nd editi). ACADEMIC PRESS, INC.
17. Criado, M., Fernández-Jiménez, A., & Palomo, A. (2010). Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 89, 3185–3192. http://doi.org/10.1016/j.fuel.2010.03.051.
18. Davidovits, J. (2008). Geopolymer Chemistry and Applications (3rd editio). Institute Geopolymere, Saint-Quentin, France.
19. Dimas, D. D., Giannopoulou, I. P., & Panias, D. (2009). Utilization of alumina red mud for synthesis of inorganic polymeric materials. Mineral Processing and Extractive Metallurgy Review, 30, 211–239. http://doi.org/10.1080/08827500802498199.
20. Du, J., Lu, J., Wu, Q., & Jing, C. (2012). Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Journal of Hazardous Materials, 215–216, 152–158. http://doi.org/10.1016/j.jhazmat.2012.02.049.
21. Duan, P., Yan, C., Zhou, W., & Luo, W. (2016). Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust. Construction and Building Materials, 118, 76–88. http://doi.org/10.1016/j.conbuildmat.2016.02.091.
22. Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven, W. M., & van Deventer, J. S. J. (2007). The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292, 8–20. http://doi.org/10.1016/j.colsurfa.2006.05.044.
23. Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F. J., Martínez-García, C., & Corpas-Iglesias, F. A. (2011). Incorporation of Coffee Grounds into Clay Brick Production. Advances in Applied Ceramics, 110, 225–232. http://doi.org/10.1179/1743676111Y.0000000006.
24. Esaifan, M., Khoury, H., Aldabsheh, I., Rahier, H., Hourani, M., & Wastiels, J. (2016). Hydrated lime/potassium carbonate as alkaline activating mixture to produce kaolinitic clay based inorganic polymer. Applied Clay Science, 126, 278–286. http://doi.org/10.1016/j.clay.2016.03.026.
25. Eurostat. (2016). Waste statistics Main statistical findings -Total waste generation.
26. Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators [Activación alcalina de cenizas volantes. Estudio comparativo entre activadores sódicos y potásicos]. Materiales de Construcción, 56, 51–65. http://doi.org/10.3989/mc.2006.v56.i281.92.
27. Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91, 111–119. http://doi.org/10.1016/j.micromeso.2005.11.015.
28. Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars Mechanical strength behaviour. Cement and Concrete Research, 29, 1313–1321. http://doi.org/10.1016/S0008-8846(99)00154-4.
29. Francis A. Kuranchie, Sanjay K. Shukla, D. H. (2014). Utilisation of iron ore mine tailings for the production of geopolymer bricks. International Journal of Mining, Reclamation and Environment, 30(2), 92–114. http://doi.org/10.1080/17480930.2014.993834.
30. Frías. Moisés, Rojas, M. I. S. de, & Rodríguez, C. (2009). The influence of SiMn slag on chemical resistance of blended cement pastes. Construction and Building Materials, 23, 1472–1475. http://doi.org/10.1016/j.conbuildmat.2008.06.012.
31. Frias, M., Sánchez De Rojas, M. I., Santamaría, J., & Rodríguez, C. (2006). Recycling of silicomanganese slag as pozzolanic material in Portland cements: Basic and engineering properties. Cement and Concrete Research, 36, 487–491. http://doi.org/10.1016/j.cemconres.2005.06.014.
32. Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., & Palomo, A. (2016). Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Construction and Building Materials, 105, 218–226. http://doi.org/10.1016/j.conbuildmat.2015.12.079.
33. Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., … Pósfai, M. (2011). The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environmental science & technology, 45, 1608–15. http://doi.org/10.1021/es104005r.
34. Glukhovsky, V. . (1981). Slag Alkaline Fine Aggregate Concretes. Kiev: USSR: Vysscha Shkola Publisher.
35. Gräfe, M., Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy, 108, 60–79. http://doi.org/10.1016/j.hydromet.2011.02.004.
36. He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. http://doi.org/10.1016/j.cemconcomp.2012.11.010.
37. Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I., … Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912–922. http://doi.org/10.1016/ j.conbuildmat.2012.04.102.
38. Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146, 359–374. http://doi.org/10.1016/S0927-7757(98)00798-5.
39. Huang, X., Huang, T., Li, S., Muhammad, F., Xu, G., Zhao, Z., … Jiao, B. (2016). Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceramics International, 42, 9538–9549. http://doi.org/10.1016/j.ceramint.2016.03.033.
40. HuiCong Hao, Kae-Long Lin, DeYing Wang, Sao-Jeng Chao, Hau-Shing Shiu, Ta-Wui Cheng, & Chao-Lung Hwang. (2013). Utilization of Solar Panel Waste Glass for Metakaolinite-Based Geopolymer Synthesis. Environmental Progress & Sustainable Energy, 33(2), 797–803. http://doi.org/10.1002/ep.
41. Jeguirim, M., Limousy, L., & Dutournie, P. (2014). Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 92(10), 1876–1882. http://doi.org/10.1016/j.cherd.2014.04.018.
42. Jeong, Y., Oh, J. E., Jun, Y., Park, J., Ha, J.-H., & Sohn, S. G. (2016). Influence of four additional activators on hydrated-lime [Ca(OH) 2 ] activated ground granulated blast-furnace slag. Cement and Concrete Composites, 65, 1–10. http://doi.org/10.1016/j.cemconcomp.2015.10.007.
43. Jiao, X., Zhang, Y., & Chen, T. (2013). Thermal stability of a silica-rich vanadium tailing based geopolymer. Construction and Building Materials (Roč. 38). http://doi.org/10.1016/ j.conbuildmat.2012.06.076.
44. Jurič, B., Hanžič, L., Ilić, R., & Samec, N. (2006). Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Management, 26, 1436–1442. http://doi.org/10.1016/ j.wasman.2005.10.016.
45. Kastiukas, G., Zhou, X., & Castro-Gomes, J. (2016). Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder. Construction and Building Materials, 110, 201–210. http://doi.org/10.1016/j.conbuildmat.2016.02.029.
46. Keeley, J., Jarvis, P., & Judd, S. J. (2012). An economic assessment of coagulant recovery from water treatment residuals. Desalination, 287, 132–137. http://doi.org/10.1016/j.desal.2011.09.013.
47. Khankhaje, E., Hussin, M. W., Mirza, J., Rafieizonooz, M., Salim, M. R., Siong, H. C., & Warid, M. N. M. (2016). On blended cement and geopolymer concretes containing palm oil fuel ash. Materials and Design, 89, 385–398. http://doi.org/10.1016/j.matdes.2015.09.140.
48. Kinnunen, P., Yliniemi, J., Talling, B., & Illikainen, M. (2016). Rockwool waste in fly ash geopolymer composites. Journal of Material Cycles and Waste Management, 1–8. http://doi.org/10.1007/s10163-016-0514-z.
49. Kraus, T., Schramel, P., Schaller, K. H., Zöbelein, P., Weber, A., & Angerer, J. (2001). Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occupational and environmental medicine, 631–634. http://doi.org/10.1136 /oem.58.10.631.
50. Kühl, H. (1908). Slag Cement and Process of Making the Same. united States Patent Office; Patent No. 900,939.
51. Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., & Bao, M. (2013). Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cement and Concrete Composites, 40, 7–13. http://doi.org/10.1016/j.cemconcomp.2013.03.026.
52. Le-ping, L., Xue-min, C., Shu-heng, Q., Jun-li, Y., & Lin, Z. (2010). Preparation of phosphoric acid-based porous geopolymers. Applied Clay Science, 50(4), 600–603. http://doi.org/10.1016/ j.clay.2010.10.004.
53. Li, C., Wan, J., Sun, H., & Li, L. (2010). Investigation on the activation of coal gangue by a new compound method. Journal of Hazardous Materials, 179, 515–520. http://doi.org/10.1016/ j.jhazmat.2010.03.033.
54. Li, H., Sun, H., Xiao, X., & Chen, H. (2006). Mechanical properties of gangue-containing aluminosilicate based cementitious materials. Journal of University of Science and Technology Beijing, 13, 183–189. http://doi.org/10.1016/S1005-8850(06)60040-6.
55. Liu, L. P., Cui, X. M., He, Y., Liu, S. D., & Gong, S. Y. (2012). The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. Materials Letters, 66(1), 10–12. http://doi.org/10.1016/j.matlet.2011.08.043.
56. Lizcano, M., Kim, H. S., Basu, S., & Radovic, M. (2011). Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. Journal of Materials Science, 47, 2607–2616. http://doi.org/10.1007/s10853-011-6085-4.
57. Louati, S., Baklouti, S., & Samet, B. (2016). Geopolymers Based on Phosphoric Acid and Illito-Kaolinitic Clay. Advances in Materials Science and Engineering, 2016, 8. http://doi.org/10.1155/2016/2359759.
58. McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19, 1080–1090. http://doi.org/10.1016/j.jclepro.2011.02.010.
59. Michael Owor, Tina Hartwig, Andrew Muwanga, Dieter Zachmann, W. P. (2007). Impact of tailings from the Kilembe copper mining district on Lake George, Uganda. Environmental Geology, 51, 1065–1075. http://doi.org/10.1007/s00254-006-0398-7.
60. Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. http://doi.org/10.1016/j.conbuildmat.2013.11.039.
61. Moskalyk, R. R., & Alfantazi, A. M. (2003). Processing of vanadium: A review. Minerals Engineering, 16, 793–805. http://doi.org/10.1016/S0892-6875(03)00213-9.
62. Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. http://doi.org/10.1016/j.resconrec.2012.06.005.
63. Mwesigye, A. R., Young, S. D., Bailey, E. H., & Tumwebaze, S. B. (2016). Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: A pilot study. Science of The Total Environment, 573, 366–375. http://doi.org/10.1016/j.scitotenv.2016.08.125.
64. Nazari, A. (2012). Experimental study and computer-aided prediction of percentage of water absorption of geopolymers produced by waste fly ash and rice husk bark ash. International Journal of Mineral Processing, 110–111, 74–81. http://doi.org/10.1016/j.minpro.2012.04.007.
65. Nazari, A., Bagherim, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering A, 528, 7395–7401. http://doi.org/10.1016/j.msea.2011.06.027.
66. Nematollahi, B., & Sanjayan, J. (2014). Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Materials and Design, 57, 667–672. http://doi.org/10.1016/j.matdes.2014.01.064.
67. Nimwinya, E., Arjharn, W., Horpibulsuk, S., Phoo-Ngernkham, T., & Poowancum, A. (2016). A sustainable calcined water treatment sludge and rice husk ash geopolymer. Journal of Cleaner Production, 119, 128–134. http://doi.org/10.1016/j.jclepro.2016.01.060.
68. Novais, R. M., Ascensão, G., Seabra, M. P., & Labrincha, J. A. (2016). Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Management, 1–11. http://doi.org/10.1016/j.wasman.2016.04.003.
69. Oosterveer, P. (2015). Promoting sustainable palm oil: viewed from a global networks and flows perspective. Journal of Cleaner Production, 107, 146–153. http://doi.org/10.1016/j.jclepro.2014.01.019.
70. Pabalan, R. T., & Pitzer, K. S. (1987). Thermodynamics of NaOH(aq) in hydrothermal solutions. Geochimica et Cosmochimica Acta, 829–837.
71. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008a). Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22, 1305–1314. http://doi.org/10.1016/j.conbuildmat.2007.10.015.
72. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008b). Properties of tungsten mine waste geopolymeric binder. Construction and Building Materials, 22, 1201–1211. http://doi.org/10.1016/j.conbuildmat.2007.01.022.
73. Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2009). Tungsten mine waste geopolymeric binder: Preliminary hydration products investigations. Construction and Building Materials, 23, 200–209. http://doi.org/10.1016/j.conbuildmat.2008.01.003.
74. Pacheco-Torgal, F., Castro-Gomes, J. P., & Jalali, S. (2008c). Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment. Construction and Building Materials, 22, 154–161. http://doi.org/10.1016/j.conbuildmat.2006.10.005.
75. Pacheco-Torgal, F., Castro-Gomes, J. P., & Jalali, S. (2008d). Investigations of tungsten mine waste geopolymeric binder: Strength and microstructure. Construction and Building Materials, 22, 2212–2219. http://doi.org/10.1016/j.conbuildmat.2007.08.003.
76. Pacheco-Torgal, F., Castro-Gomes, J. P., & Jalali, S. (2008e). Investigations on mix design of tungsten mine waste geopolymeric binder. Construction and Building Materials, 22, 1939–1949. http://doi.org/10.1016/j.conbuildmat.2007.07.015.
77. Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29, 1323–1329. http://doi.org/10.1016/S0008-8846(98)00243-9.
78. Palomo, A., Krivenko, P., Kavalerova, E., & Maltseva, O. (2014). A review on alkaline activation : new analytical perspectives. Materiales de Construcción, 64(31), 24.
79. Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37, 77–86. http://doi.org/10.1016/j.enbuild.2004.05.006.
80. Pascual, A. B., Tohoue Tognonvi, M., & Tagnit-Hamou, A. (2014). Waste Glass Powder-Based Alkali-Activated Mortar. International journal of Research in Engineering and Technology, 3(13), 15–19. Získáno z http://ijret.org/Volumes/V03/I25/IJRET_110325003.pdf.
81. Payá, J., Monzó, J., & Borrachero, M. . (1999). Fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Research, 29, 1773–1779. http://doi.org/10.1016/S0008-8846(99)00164-7.
82. Phair, J. W., & Van Deventer, J. S. J. (2002). Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. International Journal of Mineral Processing, 66, 121–143. http://doi.org/10.1016/S0301-7516(02)00013-3.
83. Provis, J. ., & Van Deventer, J. S. J. (2009). Geopolymers - Structure, processing, properties and industrial applications. Woodhed Publishing Limited and CRC Press LLC.
84. Provis, J. L., Palomo, A., & Shi, C. (2015). Cement and Concrete Research Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. http://doi.org/10.1016/j.cemconres.2015.04.013.
85. Provis, J. L., & Van Deventer, J. S. . (2014). Alkali Activated Materials State-of-the-Art Report, RILEM TC 224-AAM. RILEM State-of-the-Art Reports. New York London Library. http://doi.org/10.1007/978-94-007-7672-2.
86. Rahier. B. Van Mele, M. Biesemans, J. Wastiels, X. W. (1996). Low-temperature synthesized aluminosilicate glasses. Journal of Materials Science, 31, 71–79. http://doi.org/10.1007/BF00355128.
87. Raijiwala, D. B., Patil, H. S., & Kundan, I. U. (2012). Effect of Alkaline Activator on the Strength and Durability of Geopolymer Concrete. Journal of Engineering Research and Studies, 3, 18–21.
88. Ranjbar, N., Mehrali, M., Alengaram, U. J., Metselaar, H. S. C., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Construction and Building Materials, 65, 114–121. http://doi.org/10.1016/j.conbuildmat.2014.04.064.
89. Redden, R., & Neithalath, N. (2014). Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cement and Concrete Composites, 45, 46–56. http://doi.org/10.1016/j.cemconcomp.2013.09.011.
90. Reig, L., Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Alkaline activation of ceramic waste materials. Waste and Biomass Valorization, 4, 729–736. http://doi.org/10.1007/s12649-013-9197-z.
91. Rodriguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzi, J. M., Payi, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493–502. http://doi.org/10.1016/j.fuel.2013.02.053.
92. Rouseková, I., Bajza, A., & Živica, V. (1997). Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cement and Concrete Research, 27(12), 1825–1828. http://doi.org/10.1016/S0008-8846(97)00191-9.
93. Roy, D. M. (1999). Alkali-activated cements: Opportunities and challenges. Cement and Concrete Research, 29, 249–254. http://doi.org/10.1016/S0008-8846(98)00093-3.
94. Saeed Ahmari, & Lianyang Zhang. (2012). Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials, 29, 323–331. http://doi.org/10.1016/j.conbuildmat.2011.10.048.
95. Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2007). Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Construction and Building Materials, 21, 1589–1598. http://doi.org/10.1016/j.conbuildmat.2005.09.011.
96. Shi, C., & Fernández-Jiménez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of hazardous materials, 137, 1656–63. http://doi.org/10.1016/j.jhazmat.2006.05.008.
97. Shi, C., Krivenko, P., & Roy, D. (2006). Activated Cements and Concretes. Alkali-Activated Cements and Concretes. Taylor & Francis.
98. Siddique, R. (2008). Waste materials and by-products in concrete. Waste Materials and By-Products in Concrete. http://doi.org/10.1007/978-3-540-74294-4.
99. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90, 2118–2124. http://doi.org/10.1016/j.fuel.2011.01.018.
100. Sonebi, M., & Cevik, A. (2009). Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash. Construction and Building Materials, 23, 2614–2622. http://doi.org/10.1016/j.conbuildmat.2009.02.012.
101. Stock, D. (2014). World production and consumption of ceramic tiles. Tile Today. http://doi.org/10.1007/s10692-011-9269-4.
102. Sun, T., Chen, J., Lei, X., & Zhou, C. (2014). Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. Journal of Environmental Chemical Engineering, 2, 304–309. http://doi.org/10.1016/j.jece.2013.12.022.
103. Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J., & Li, Q. (2013). Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Construction and Building Materials, 49, 281–287. http://doi.org/10.1016/j.conbuildmat.2013.08.063.
104. Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012a). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50–52. http://doi.org/10.1016/j.matlet.2012.04.051.
105. Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012b). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50–52. http://doi.org/10.1016/j.matlet.2012.04.051.
106. Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833–839. http://doi.org/10.1016/j.fuel.2013.02.052.
107. Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 7102, 1–32. http://doi.org/10.1007/s10971-016-3983-6.
108. Torres-Carrasco, M., & Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 90, 397–408. http://doi.org/10.1016/j.jclepro.2014.11.074.
109. Torres, J. J., Palacios, M., Hellouin, M., & Puertas, F. (2009). Alkaline Chemical Activation of Urban Glass Wastes to Produce Cementitious Materials. In 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy Madrid, 12-13 November 2009 (s. 12–13).
110. Türker, H. T., Balçikanli, M., Durmus, I. H., Özbaya, E., & Mustafa, E. (2016). Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Construction and Building Materials, 104, 169–180. http://doi.org/10.1016/j.conbuildmat.2015.12.070.
111. Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. http://doi.org/10.1016/j.conbuildmat.2013.01.023.
112. Vafaei, M., & Allahverdi, A. (2016). High strength geopolymer binder based on waste-glass powder. Advanced Powder Technology, 1–8. http://doi.org/10.1016/j.apt.2016.09.034.
113. Wang, J., Qin, Q., Hu, S., & Wu, K. (2015). A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas. Journal of Cleaner Production, 112, 631–638. http://doi.org/10.1016/j.jclepro.2015.07.138.
114. Wang, W. C., Chen, B. T., Wang, H. Y., & Chou, H. C. (2016). A study of the engineering properties of alkali-activated waste glass material (AAWGM). Construction and Building Materials, 112, 962–969. http://doi.org/10.1016/j.conbuildmat.2016.03.022.
115. Wiley-VCH. (2005). ULLMANN’S. In Encyclopedia of industrial chemistry (7th ed). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2005.
116. Wu, M. H., Lin, C. L., Huang, W. C., & Chen, J. W. (2016). Characteristics of pervious concrete using incineration bottom ash in place of sandstone graded material. Construction and Building Materials, 111, 618–624. http://doi.org/10.1016/j.conbuildmat.2016.02.146.
117. Xiao, H., & Liu, K. (2010). Co-combustion kinetics of sewage sludge with coal and coal gangue under different atmospheres. Energy Conversion and Management, 51, 1976–1980. http://doi.org/10.1016/j.enconman.2010.02.030.
118. Yan, S., & Sagoe-Crentsil, K. (2012). Properties of wastepaper sludge in geopolymer mortars for masonry applications. Journal of Environmental Management, 112, 27–32. http://doi.org/10.1016/j.jenvman.2012.07.008.
119. Yan, S., Sagoe-Crentsil, K., & Shapiro, G. (2011). Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Journal of Environmental Management, 92(8), 2085–2090. http://doi.org/10.1016/j.jenvman.2011.03.028.
120. Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317–325. http://doi.org/10.1016/j.conbuildmat.2016.02.099.
121. Yliniemi, J., Kinnunen, P., Karinkanta, P., & Illikainen, M. (2016). Utilization of Mineral Wools as Alkali-Activated Material Precursor. Materials, 9(5), 312. http://doi.org/10.3390/ma9050312.
122. Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014). Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Construction and Building Materials, 52, 504–510. http://doi.org/10.1016/j.conbuildmat.2013.11.012.
123. Zhang, S., Xue, X., Liu, X., P.Duan, Yang, H., Jian, T., … Liu, R. (2006). Current situation and comprehensive utilization of iron ore tailing resources. Journal of Mining Science, 42, 403–408.
124. Zhang, Y. M., Bao, S. X., Liu, T., Chen, T. J., & Huang, J. (2011). The technology of extracting vanadium from stone coal in China: History, current status and future prospects. Hydrometallurgy, 109, 116–124. http://doi.org/10.1016/j.hydromet.2011.06.002.
125. Živica, V. (1993). Alkali - Silicate admixture for cement composites incorporating pozzolan or blast furnace slag. Cement and Concrete Research, 23(5), 1215–1222. http://doi.org/http://dx.doi.org/10.1016/0008-8846(93)90182-9.
126. Živica, V. (2006). Effectiveness of new silica fume alkali activator. Cement and Concrete Composites, 28(1), 21–25. http://doi.org/10.1016/j.cemconcomp.2005.07.004.
Copy url
Share
 
 
Sign up for email alerts
 
eISSN:2353-5423
ISSN:2300-9586