120.55
ICV 2016
8
MNiSW
CC BY-NC 3.0 Polska
 
 

THE EFFECT OF LIMESTONE FINENESS ON TERNARY CEMENT FRESH-STATE AND EARLY-AGE PROPERTIES

NOUI AMMAR 1  ,  
 
1
Departement of civil ingenering, faculty of technology, University mohammed boudiaf MSILA
2
Laboratory of Materials and Structure Mechanics, Department of civil engineering Faculty of Technology , University Med Boudiaf of M’sila , Algeria
Mining Science 2017;24:195–208
KEYWORDS:
TOPICS:
ABSTRACT:
Abstract: During cement production, a significant amount of CO2 is released into the atmosphere, it is estimated that the production of each ton of clinker free about a ton of second carbon oxide. The use of additions as constituents of cement reduces the amount of clinker, where C02 emissions are reduced. The combination of two or three additions with Portland cement can develop new types of binders (ternary or quaternary cement) with improved physical and mechanical properties compared to Portland cement alone. The objective of this work involves the study of the effects of the fineness of limestone on the physical and mechanical properties of ternary cements containing pozzolan and limestone with specific area of 3500, 5500 and 11000 cm2/g, respectively. The amount of clinker is fixed at 65% , that of limestone is varied from 10 to 35% by weight of cement, the remain is constituted of pozzolanic addition. The results showed that increasing the surface area of limestone could be with a favorable effect on the physical properties in particular the setting time and the shrinkage; further to good strength, mainly at early ages. The higher dosages of pozzolan reaching 25 % gave better mechanical performances among all other mixtures. It can be concluded that the use of combined mineral additions, limestone and pozzolan could be beneficial to formulate ternary cements with improved physical and mechanical properties for mortars based on such binders.
CORRESPONDING AUTHOR:
NOUI AMMAR   
Departement of civil ingenering, faculty of technology, University mohammed boudiaf MSILA, route de BBA MSILA, 28000 MSILA, Algeria
 
REFERENCES (39):
1. REFERENCES.
2. BELAGRAA L., A. BOUZID, 2016. Performance study of low environmental impact mortars based on mineral additions and cement resistant to sulfate (crs) , Mining Science, vol. 23, 65−76.
3. BELLIFA S, GHOMARI F., BOUKLI HACENE M A., TALEB O., 2014, Influence des fillers calcaires sur la porosité et la distribution porale des pâtes autoplaçantes’ . Revue « Nature & Technologie ». A- Sciences fondamentales et Engineering, n° 12, 60-66.
4. BOUASKER M., P. MOUNANGA, P. TURCRY, A. LOUKILI, and A. KHELIDJ, 2008. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular in-clusions, Cem. Concr. Compos., vol. 30, no. 1, 13–22.
5. BOUGLADA M., 2008. Effet de l'activation du ciment avec ajout minéral par la chaux fine sur le com.
6. portement mécanique du mortier, thèse de magister, département de Génie Civil. Université de.
7. M’sila,Algérie.
8. CAID R., JAUBERTHIE R., BOUKHALED A., 2010. Effet de l'ajout calcaire sur la durabilité des bétons', Libanaise Science journal, Vol. 11, No 1, 91-103.
9. CASSAGNABÈRE F., LACHEMI M., MOURET M., ESCADEILLAS G., 2011. Caractérisation per.
10. formantielle d’un liant ternaire à base de ciment, laitier et métakaolin, Can. J. Civ. Eng., vol. 38, no. 8, 837–848.
11. CHAIB O. et al, 2015. Etude de l’influence de la pozzolane naturelle sur la résistance mécanique des mortiers à base de ciments composés , 33èmes Rencontres de l’AUGC, ISABTP/UPPA, Anglet, 27 au 29 Mai 2015.
12. DEBOUCHA W. , M.N. OUDJIT, A. BOUZID, L. BELAGRAA, 2015. Effect of Incorporating Blast Furnace Slag and Natural Pozzolan on the Compressive Strength and Capillary Water Absorption of Concrete, 7th Scientific-Technical Conference on Material Problems in Civil Engineering MAT-BUD'2015, Cracow, 22-24 June 2015, Cracow, Poland.
13. DEBOUCHA W., BELAGRAA L., BOUZID A., OUDJIT M.N., 2012. L’effet des fillers de calcaire sur.
14. les propriétés physico-chimiques du mortier à base de CRS, Colloque International Francophone.
15. NoMaD, 298-306.
16. DOUG HOOTON R AND MICHAEL D. A. THOMAS (2002),The Use of Limestone in Portland Ce-ments, Portland Cement Association;.
17. EZZIANE K., E. KADRI, H. KADRI, A. HALLAL, R. DUVAL, (2010), Effect of mineral additives on the setting of blended cement by the maturity method, Publication: RILEM, Volume: 43, Issue: 3, 393-401.
18. GUEMMADI1 Z., B. TOUMI, H. CHABI1, M. RESHEIDAT , 201à. Analyses des actions des fillers calcaire sur les propriétés physico-chimiques et la microstructure des pâtes de ciment , 72me séminaire, Lafarge, Décembre 2010.
19. IMBABI M.S., CARRIGAN C., MCKENNA S., 2012. Trends and developments in green cement and.
20. concrete technology, Int. J. Sustain. Built Environ., vol. 1, no. 2, pp. 194–216.
21. KERBOUCHE A., MOULI M., L. LAOUFI L., SENHADJI Y., BENOSMANE S., 2009. Influence des.
22. ajouts minéraux sur les résistances mécaniques des mortiers, SBEIDCO-1st International Conference.
23. on sustainable Built Environment Infrastructures, in: Developing Countries ENSET Oran (Algeria),.
24. 431-438.
25. KHALIFA N. E. H., M. BOUASKER, P. MOUNANGA, AND N. BENKAHLA, 2013. Physico-chemical study of cementitious materials based on binary and ternary binders, Chemistry and Materi-als Research, vol. 4.19–24.
26. LOTHENBACH B., G. Le Saout, E. Gallucci, and K. Scrivener, 2008, Influence of limestone on the hydration of Portland cements,” Cem. Concr. Res., vol. 38, no. 6, 848–860.
27. MACLEOD F., 2005. L’emploi d’ajouts cimentaires dans les revêtements de chaussée en béton exposés.
28. aux cycles de gel-dégel et aux produits chimiques de déglaçage, CEMENT ASSOCIATION OF.
29. CANADA, ing. Mars ,10-12.
30. MENENDEZ G., BONAVETTI V., IRASSAR E. F., 2003. Strength development of ternary blended cement with limestone filler and blast-furnace pozzolan, Cement and Concrete Research, vol. 25, n° 1, 61-67.
31. MOUNANGA P., M. I. A. KHOKHAR, R. EL HACHEM, AND A. LOUKILI, 2010. Improvement of the early-age reactivity of fly ash and pozzolan cementitious systems using limestone filler,” Mater. Struct., vol. 44, no. 2, 437–453.
32. EN 12390-3 (2009), Compressive strength at 28 days,.
33. EN 12390-6 (2003), Splitting tensile strength at 28 days.
34. EN 196-1, (2003), Determination of strength, Method of testing cement.
35. EN 933-1 (2000), Aggregate sieve analysis and grading.
36. EN 933-2 (1999), Aggregate characterization.
37. EN 196-3, 2003, Testing of cement and mortars.
38. SCHINDLER A.K., FOLLIARD K.J., 2005, Heat of hydration models for cementitious materials, ACI Materials Journal, vol. 102, n° 1, 24-33.
39. TORRES-CARRASCO M., PUERTAS F., 2017. Alkaline activation of aluminosilicates as an alternative to Portland cement: A Review, Romanian Journal of Materials 2017, 47 (1), 3 – 15.
eISSN:2353-5423
ISSN:2300-9586