120.55
ICV
8
MNiSW
CC BY-NC 3.0 Polska
 
 

USE OF HIGH SPATIAL RESOLUTION SATELLITE DATA FOR MONITORING AND CHARACTERIZATION OF DROUGHT CONDI-TIONS IN THE NORTHWESTERN ALGERIA

Abbes Malika 1  ,  
Lafrid Aicha 2,  
Nehal Laounia 2,  
 
1
Mascara University, Algeria
2
Centre des Techniques Spatiales (CTS)-Algeria
Mining Science 2018;25:85–113
KEYWORDS:
TOPICS:
ABSTRACT:
Abstract: Over the last decades, Algeria has witnessed intense and persistent drought periods characterized by a significant rainfall deficit. The Northwestern Algeria, such as the most south Mediterranean regions, is marked by alternating wet and dry periods and mixing between Atlantic and Mediterranean airs. In a climate context increasingly disturbed by anthropogenic activities, it is essential to analyze the dry episodes at spatial and temporal scales. In order to understand this problem, this work aims to use the potential of Landsat satellite imagery for monitoring drought conditions in the Cheliff watershed in the northwestern Algeria. As known, the behavior of vegetation is strongly related to climate changes. On this basis, a comparison of the variations in the standardized normalized difference vegetation index (NDVI) and those of the drought indices calculated from meteorological data was implemented. In fact, the rainfall series from fifty meteorological stations were analyzed. The standardized precipitation index (SPI) was calculated for the years 1987, 2000, 2006, 2011 and 2015, corresponding to the acquisition dates of Landsat images. Similarly, an extraction of the NDVI values was performed for each meteorological station. The linear regression between SPI and NDVI showed a good correlation. Thus, the obtained results enabled establishing a new drought index based essentially on satellite data. This index represents the advantage for monitoring spatially the drought phenomena and can solve the problem of climatic data lack.
CORRESPONDING AUTHOR:
Abbes Malika   
Mascara University, 58, Tassouli Abdelah, Sig, 29000 Sig, Mascara, Algeria
 
REFERENCES (62):
1. ABABOU A., BOUTHIBA AEK., CHOUIEB M., REGUIEG YSSAAD H.A., 2017, Drought Assess-ment and Rainfall Trend Analysis in a Southern Mediterranean Watershed During the Last Century (1914–2011).
2. ABH, 1970–2015, Data Provided by the Water Basin Agency.
3. ANRH, 1970–2015, Data Provided by the National Hydric Resource Agency.
4. BATES B., KUNDZEWICZ Z., WU S., 2008, Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat.
5. BEAUDIN I., 2007, Potential of Remote Sensing for the Monitoring and Characterization of Drought Conditions in the Mediterranean Environment, Master’s Report in Geomatic Sciences.
6. BHUIYAN C., 2008, Desert Vegetation During Droughts: Response and Sensitivity, Int. Arch. Photo-gramm. Remote Sens. Spat. Inf. Sci., 37, 907–912.
7. DASH P., GÖTTSCHE F.M., OLESEN F.S., FISCHER H., 2002, Land Surface Temperature and Emis-sivity Estimation from Passive Sensor Data: Theory and Practice – Current Trends, Int. J. Remote Sens., 23, 2563–2594.
8. DOUAOUI A., HARKAT S., BOUKHAROUBA K., 2014, Multi-Site Modeling and Prediction of Annual and Monthly Precipitation in the Watershed of Cheliff (Algeria).
9. EDER U., WIECHERT R., SAUER G., 1971, German Patent, DE 2 014 757, 7 October.
10. FINCKH L., 1924, Erlauterungen zur Geologische Karte von Preussen, Blatt Charlottenbrunn, Kgl. Preuss. Geol. L.A. Berlin.
11. GIBBS W.J., MAHER J.V., 1967, Rainfall Deciles as Drought Indicators, Bureau of Meteorology Bulle-tin, No. 48, Commonwealth of Australia, Melbourne.
12. Guttman N.B., 1994, On the Sensitivity of Sample L Moments to Sample Size, Journal of Climate, 7 (6), 1026–1029.
13. HAMED Y., 2004, Caractérisation Hydrogéologique, Hydrochimique et Isotopique des Eaux Souterraines de la Région du Kef (Nord-Ouest Tunisien), Mémoire DEA, Faculté des Sciences de Sfax, p. 180.
14. HAMED Y., DASSI L., AHMADI R., DHIA H.B., 2008, Geochemical and Isotopic Study of the Multilayer Aquifer System in the Moulares–Redayef Basin, Southern Tunisia. Etude Géochimique et Isotopique du Système Aquifère Multicouche du Bassin de Moulares–Redayef, Sud Tunisien, Hydrol. Sci. J., 53 (6), 1241–1252.
15. HAMED Y., BEN DHIA H., 2010, Étude Géochimique et Isotopique de la Nappe Phréatique de la Plaine du Kef (Nord-Ouest Tunisien), Sécherèsse, 21 (2), 121–130.
16. HAMED Y., DHAHRI F., 2013, Hydro-Geochemical and Isotopic Composition of Groundwater, with Emphasis on Sources of Salinity, in the Aquifer System in Northwestern Tunisia, J. Afr. Earth Sci., 83, 10–24.
17. HAMED Y., AHMADI R., DEMDOUM A., BOURI S., GARGOURI I., BEN DHIA H., Al GAMAL S., LAOUAR R., CHOURA A., 2014, Use of Geochemical, Isotopic, and Age Tracer Data to Develop Models of Groundwater Flow: A Case Study of Gafsa Mining Basin – Southern Tunisia, J. Afr. Earth Sci., 100, 418–436.
18. HAMED Y., REDHAOUNIA B., SÂAD A.B., HADJI R., ZAHRI F., ZIGHMI K., 2017, Hydrothermal Waters from Karst Aquifer: Case Study of the Trozza Basin (Central Tunisia), J. Tethys, 5 (1), 33–44.
19. HAMED Y., REDHAOUNIA B., BEN SÂAD A., HADJI R., ZAHRI F., 2017b, Groundwater Inrush Caused by the Fault Reactivation and the Climate Impact in the Mining Gafsa Basin (Southwestern Tunisia), J. Tethys, 5 (2), 154–164.
20. HAMED Y., 2017, Projet Pilote: Nouvelle Tunisie “Apport d’Eau de Mer du Golfe de Gabès a Gafsa: As Pects Socio-Economiques et Exploitation”, [In] The 1st International Symposium (WREIANA 2017), Gafsa.
21. HAMED Y., BOUGUERRA W., LIMAM E., 2018a, Projet Pilote “Transfert d’Eau de Mer du Golfe de Gabès a Gafsa: Aspects Socio-Economiques et Exploitation”, Tunis, 2 Mars 2018, ANPR-Tunisie.
22. HAMED Y., HADJI R., REDHAOUNIA B., ZIGHMI K., BÂALI F., EL GAYAR A., 2018b, Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommenda-tion, Euro-Mediterranean J. Environ. Integr., https://doi.org/10.1007/s4120 7-018-0063-z.
23. HAMMOURI M., FOHTUNG E., VASILIEV I., 2016, Ab Initio Study of Magnetoelectric Coupling in La0.66Sr0.33mno3/Pbzr0.2Ti0.8O3 Multiferroic Heterostructures, J. Phys. Condens. Matter., 28 (39), 396004.
24. IF, 1972, Bulletin of Engineering Geology and the Environment.
25. JING L., LI J., MASSIMO M., YUPING Y., CHAOLEI Z., JIE Z., 2018, Performance of the Standard-ized Precipitation Index Based on the TMPA and CMORPH Precipitation Products for Drought Monitoring in China.
26. KETROUCI K., 2002, La Sécheresse Dans le Nord-Ouest Algérien et Son Incidence Sur la Production de Blé Dur, Mémoire de Magister, C.U. Mascara.
27. KEYANTASH J., DRACUP J.A., 2004, An Aggregate Drought Index: Assessing Drought Severity Based on Fluctuations in the Hydrologic Cycle and Surface Water Storage, Water Resour.
28. KHALDI A., 2005, Impacts de la Sécheresse Sur le Régime des Ecoulements Souterrains Dans les Massifs Calcaires de l’Ouest Algérien, Monts de Tlemcen – Saida.
29. KOGAN F.N., 1990, Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas, Int. J. Remote Sens., 11 (8), 1405–1419.
30. KOGAN F.N., 1995, Application of Vegetation Index and Brightness Temperature for Drought Detection, Adv. Space Res., 15, 91–100.
31. KOGAN F.N., 1995, Droughts of Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data, National Oceanic and Atmospheric Administration.
32. KOGAN F.N., 1997, Global Drought Watch from Space, Bulletin of the American Meteorological Society,.
33. 7 (4), 621−636.
34. KOGAN F.N., 2002, World Droughts in the New Millennium from AVHRR-Based Vegetation Health Indices, Eos Trans. Am. Geophy. Union, 83 (48), 562–563.
35. KOGAN F., GITELSON A., ZAKARIN E., SPIVAK L., LEBED L., 2003, AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity, Photogramm. Eng. Remote Sens., 69, 899–906.
36. KOGAN F., STARK R., GITELSON A., JARGALSAIKHAN L., DUGRAJAV C., TSOOJ S., 2004, Derivation of Pasture Biomass in Mongolia from AVHRR-based Vegetation Health Indices, Interna-tional Journal of Remote Sensing.
37. KOGAN F., YANG B., GUO W., PEI Z., JIAO X., 2005, Modelling Corn Production in China Using AVHRR-Based Vegetation Health Indices, International Journal of Remote Sensing, 2.
38. LYON JG., YUAN D., LUNETTA R.S., 1998, A Change Detection Experiment Using Vegetation Indices, Photogramm. Eng. Rem. Sens., 64 (2), 143–150.
39. MCKEE T.B., DOESKEN N.J., KLEIST J., 1993, The Relationship of Drought Frequency and Duration to Time Scales. [In] Proceedings of The 8th Conference on Applied Climatology, American Meteoro-logical Society, Boston, MA., US., Vol. 17, pp. 179–183.
40. MCKEE T.B., DOESKEN N.J., KLEIST J., 1995, Drought Monitoring with Multiple Time Scales. [In] Proceedings of The Ninth Conference on Applied Climatology, Am. Meteorol. Soc., Boston, pp. 233–236.
41. MICHAEL HAYES., 2007, Drought Indices 2007, Climate Impacts Specialist, National Drought Mitiga-tion Center.
42. OMM, L’Organisation Météorologique Mondiale.
43. PALMER W.C., 1968, Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index, Weatherwise, 21, 156–161.
44. PALMER W.C., 1965, Meteorological Drought, Research Paper No. 45, U.S. Department of Commerce-.
45. weather Bureau,Washington, DC.
46. PALMER D.S., 1965, Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time.
47. – A Quick Method of Obtaining a Near Optimum, Journal of the Operational Research Society, Vol. 16, No. 1, pp. 101–107.
48. RADHOUANE L., 2013, Climate Change Impacts on North African Countries and on Some Tunisian Economic Sectors, J. Agri. Environ Intern. Dev. (JAEID), 107 (1), 101–113.
49. RAVI S., NITIN B., VIVEK M., 2015, Drought Index Computation Using Standardized Precipitation Index (SPI) Method for Surat District, Gujarat.
50. ROJAS O., VRIELING A., REMBOLD F., 2011, Assessing Drought Probability for Agricultural Areas in Africa with Coarse Resolution Remote Sensing Imagery, Remote Sensing of Environmental, 115, 343–352.
51. SABRI A.F., MEDJERAB A., 2012, Evaluation de la Vulnérabilité des Bassins Versants Algériens Aux Effets des Changements Climatiques et Formulation de Stratégies d’Adaptation, Doctoral Dissertation).
52. SEILER R.A., KOGAN F., GUO W.E., 2000, Monitoring Weather Impact and Crop Yield from NOAA AVHRR Data in Argentina, Published by Elsevier Science, Ltd., All Rights Reserve.
53. SEILER R.A., KOGAN F., GUO W., VINOCUR M., 2007, Seasonal and Interannual Responses of the Vegetation and Production of Crops in Cordoba, Argentina Assessed by AVHRR-Derived Vegetation Indices, Advances in Space Research, 39 (1), 88−94.
54. SERGIO M., SERRANO V., CABELL O., TOMÁS-BURGUERA T., MARTÍN-HERNÁNDEZ N., BEGUERÍA S., AZORIN-MOLINA M., EL KENAWY A., 2015, Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011).
55. SHAFER B.A., DEZMAN L.E., 1982, Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. [In] Proceedings of The Western Snow Conference, Fort Collins, CO, pp. 164–175.
56. TUCKER C.J., VANPRAET C., BOERWINKEL E., GASTON EA., 1983, Satellite Remote Sensing of Total Dry Matter Production in the Senegalese Sahel, Remote Sens. Environ., 13, 461–47.
57. UNGANAI L., KOGAN F., 1998, Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data, Remote Sensing of Environment, 63, 19−232.
58. USGS, U.S., Geological Survey. Landsat 8 (L8) Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS): Calibration Notices, available online: http://Landsat.Usgs.Gov/Calibr....
59. Notices.Php (accessed on 15 June 2015).
60. WILHITE D.A., 2005, Drought and Water Crises: Science, Technology, and Management Issues, CRC Press, Boca Raton, FL, USA.
61. WMO, World Meteorological Organization.
62. WU D., QU J.J., HAO X., XIONG J., 2013, The 2012 Agricultural Drought Assessment in Nebraska Using MODIS Satellite Data. 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August, pp. 170–175.
Copy url
Share
 
 
Sign up for email alerts
 
eISSN:2353-5423
ISSN:2300-9586