120.55
ICV
8
MNiSW
CC BY-NC 3.0 Polska
 
 

Potential importance of metallic resources of ordinary chondrite parent bodies

 
1
Wroclaw Univeristy of Science and Technology
Mining Science 2018;25:71–83
KEYWORDS:
TOPICS:
ABSTRACT:
Demand for metallic resources constantly increases along with technological development. One of the factors that currently raises requests for resources is extensive space exploration. Especially, the exploration that involves space colonization creates the needs for resources not only on the Earth but also on other bodies in the Solar System. For instance, resources will be required for building bases and settlements or spare parts to machines, devices and space shuttles. The high transportation costs make launching them from our planet ineffective. New and attractive places for prospecting the resources in our Solar System are bodies located in the asteroid belt, namely parent bodies of ordinary chondrites. The goal of this paper is a review of scientific and economic aspects of extraterrestrial resources associated with such bodies. Studies of meteorites combined with scientific achievements of current space mission significantly improved our understanding of the origin, structure as well as chemical and mineral composition of these bodies and processes that affected them. This knowledge is used in XXI century to set up companies aiming at asteroid mining, or production of fuel and spare pieces in space. Additionally, owing to the fact that some asteroids are on collisional course with our planet, possibilities arise for resource utilization by deflection of hazardous asteroids and setting them on circumterrestrial or circummoon orbits.
CORRESPONDING AUTHOR:
Katarzyna Łuszczek   
Wroclaw Univeristy of Science and Technology, Na Grobli 15, 50-421 Wroclaw, Poland
 
REFERENCES (58):
1. AHRENS L.H., 1970, The composition of stony meteorites (VII) observations on fractionation between the L and H chondrites, Earth and Planetary Science Letters, 9, 345–347.
2. BADESCU V. (ed.) 2013, Asteroids. Prospective Energy and Material Resources, Springer, 689 p.
3. BLAIR B.R., 2000, The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Talk presented during Second Space Resources Roundtable, Colorado School of Mines, 8–10.11.2000, Boulder, CO, USA, http://www.nss.org/settlement/....
4. CHOU Ch.L., COHEN A.J., 1972, Gallium and germanium in the metal and silicates of L- and LL-chondrites, Geochimica et Cosmochimica Acta, 37, 315–327.
5. CLARK B.E., HAPKE B., PIETERS C., BRITT D., 2002, Asteroid Space Weathering and Regolith Evolution, [In:] W.F. Bottke, Jr., A. Cellino, P. Paolicchi, R.P. Binzel, Asteroids III, University of Arizona Press, Tucson, pp. 585–599.
6. CRAIG J.R., VAUGHAN D.J., SKINNER B.J., 2011, Earth resources and the environment, 4th ed., Person Education, 508 p.
7. DODD R.T., 1976, Iron-silicate fractionation within ordinary chondrite groups, Earth and Planetary Science Letters, 28, 479–484.
8. FISCHER-GÖDDE M., BECKER H., WOMBACHER F., 2010, Rhodium, gold and other highly sidero-phile element abundances in chondritic meteorites, Geochimica et Cosmochimica Acta, 74, 356–379.
9. FOUCHE K.F., SMALES A.A., 1967, The distribution of trace elements in chondritic meteorites. 2. Antimony, arsenic, gold, palladium and rhenium, Chemical Geology, 2, 105–134.
10. FRIEDRICH J.M., 2006, Limit on the scale of impact-related metal/silicate segregation on L chondrite parent(s), Geochemical Journal, 40, 501–512.
11. FRIEDRICH J.M., RUZICKA A., RIVERS M.L., EBEL D.S., THOSTENSON J.O., RUDOLPH R.A., 2013, Metal veins in Keronuvé (H6 S1) chondrite: Evidence for pre- or syn-metamorphic shear de-formation, Geochimica et Cosmochimica Acta, 116, 71–83.
12. HUTCHISON R., 2006, Meteorites. A Petrologic, Chemical and Isotopic Synthesis, Cambrigde Univeristy Press, Cambrigde.
13. HORAN M.F., WALKER R.J., MORGAN J.W., GROSSMAN J.N., RUBIN A.E., 2003, Highly sidero-phile elements in chondrites, Chemical Geology, 196, 5–20.
14. HSU J., 2009, New Rocket Fuel Mixes Ice and Metal, http://space.com (5.05.2010).
15. KALLEMEYN G.W., RUBIN A.E., WANG D., WASSON J.T., 1989, Ordinary chondrites: bulk compo-sitions, classification, lithophile-element fractionations, and composition-petrographic type relation-ships, Geochimica et Cosmochimica Acta, 53, 2747–2767.
16. KARGEL J.S., 1994, Metalliferous asteroids as potential sources of precious metals, Journal of Geo-physical Research, 99, 2114–2129.
17. KARGEL J.S., 1996, Market Value of Asteroidal Precious Metals in an Age of Diminishing Terrestrial Resources, Engineering, Construction, and Operations in Space, 5, 821–829.
18. KONG P., EBIHARA M., 1997, The origin and nebular history of the metal phase of ordinary chondrites, Geochimica et Cosmochimica Acta, 61, 2317–2329.
19. KRZESIŃSKA A.M., 2017, Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite, Meteoritics and Planetary Science, 52 (11), 2305–2317.
20. LANG K.R., 2011, The Cambridge Guide to the Solar System, Second ed., Cambridge University Press, Cambridge.
21. LEWIS J.S., 1997, Mining the sky: Untold Riches from the Asteroids, Comets, and Planets, Addison-Wesley Publishing Company, 274 p.
22. LEWIS J.S., MATTHEWS M.S., GUERRIERI M.L., 1993, Resources of Near Earth Space, University of Arizona Press.
23. LINGNER D.W., HUSTON T.J., HUTSON M., LIPSCHUTZ M.E., 1987, Chemical studies of H chondrites. I: Mobile trace elements and gas retention ages, Geochimica et Cosmochimica Acta, 51, 727–739.
24. ŁUSZCZEK K., 2011, Poszukiwania nowych zasobów surowców w Układzie Słonecznym. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, Studia i Materiały 40, 85–94.
25. MCKAY M.F., MCKAY D.S., DUKE M.B., 1992, Space resources, U.S. Government Printing Office, Washington.
26. MCSWEEN H.Y, HUSS G.R., 2010, Cosmochemistry, Cambrigde Univeristy Press, Cambrigde.
27. MICHEL P., 2014, Formation and Physical Properties of Asteroids, Elements, 10, 19–24.
28. MORGAN J.W., JANSSENS M.J., TAKAHASHI H., HERTOGEN J., ANDERS E., 1985, H-chondrite: Trace element clues to their origin, Geochimica et Cosmochimica Acta, 49, 247–259.
29. MOSKOWITZ C., 2010, “Wet” Asteroid Could Be a Space Gas Station, http://space.com (10.05.2010).
30. PRADO M., 2009, Permanent. Chapter 1.6. Mining and Processing an Asteroid, www.permanent.com/.
31. a-mining.htm.
32. PRZYLIBSKI T.A., 2015, Pozaziemskie górnictwo, Meteoryt, 3, 3–10.
33. RAMBALDI E.R., 1977, Trace element content of metals from H- and LL-group chondrites, Earth and Planetary Science Letters, 36, 347–358.
34. RAMBALDI E.R., CENDALES M., THACKER R., 1978, Trace element distribution between magnetic and non-magnetic portions of ordinary chondrites, Earth and Planetary Science Letters, 40, 175–186.
35. RYBICKA U., 2007, 50 lat temu rozpoczęła się era kosmiczna, PAP – Nauka w Polsce, http://.
36. www.eduskrypt.pl/index.php?inf... (02.10.2007).
37. SANCHEZ J.P., MCINNES C., 2011, An Asteroid Resource Map for Near-Earth Space, Journal of Spacecraft and Rockets, 48 (1), 153–165.
38. SONTER M.J., 1998, The technical and economic feasibility of mining the Near-Earth Asteroids. 49 IAF Congress, 28.09–2.10.1998, Melbourne, Australia.
39. SONTER M.J., 2006, Asteroid Mining: Key to Space Economy, http://space.com (10.05.2010).
40. SULLIVAN R.J., THOMAS P.C., MURCHIE S.L., ROBINSON N.S., 2002, Asteroid Geology from Galileo and NEAR Shoemaker Data, [In:] W.F. Bottke, Jr., A. Cellino, P. Paolicchi, R.P. Binzel (Eds.), Asteroids III, University of Arizona Press, Tucson, 331–350.
41. TAGLE R., BERLIN J., 2008, A database of chondrite analyses including platinum group elements, Ni, Co, Au and Cr: Implication for the identification of chondritic projectiles, Meteoritics and Planetary Science, 43 (3), 541–559.
42. TOMKINS A.G., WEINBERG R.F., SHEAFER B.F., LANGENDAM A., 2013, Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation, Geochimica et Cosmochimica Acta, 100, 41–59.
43. TSUCHIYAMA A., 2014, Asteroid Itokawa – A source of ordinary chondrites and a laboratory for surface processes, Elements, 10, 45–50.
44. WOLF S.F., LIPSCHUTZ M.E., 1998, Chemical studies of H chondrites 9: Volatile trace element composition and petrographic classification of equilibrated H chondrites, Meteoritics and Planetary Science, 33, 303–312.
45. ZUBRIN R., WAGNER R., 1997, Czas Marsa, Prószyński i Spółka, Warszawa.
46. http://www.asterank.com (8.01.2015; 16.04.2018).
47. http://deepspaceindustries.com (8.01.2015).
48. http://global.jaxa.jp (10.04.2018).
49. http://www.kitco.com/market (15.06.2018).
50. http://kopalniawiedzy.pl (9.03.2015).
51. http://kosmonauta.net (17.06.2012).
52. http://mining.com (15.12.2015).
53. http://www.nettg.pl (8.01.2015).
54. www.nasa.gov (8.01.2015; 16.04.2018).
55. http://nt.interia.pl (8.01.2015).
56. http://pierwszymilion.forbes.p... (8.01.2015).
57. http://www.rp.pl (8.01.2015).
58. http://tech.money.pl (8.01.2015).
Copy url
Share
 
 
Sign up for email alerts
 
eISSN:2353-5423
ISSN:2300-9586