Design of the shaft lining and shaft stations for deep polymetallic ore deposits: Victoria Mine case study
More details
Hide details
KGHM Cuprum Ltd Research and Development Centre
Wroclaw University of Technology
Mining Science 2015;22:127–146
In order to properly design a shaft it is necessary to acquire full information about the rock mass in the exploration area. It is especially crucial in the case of the deposit of an unusual vertical intrusion shape, occurring at a great depth. Such a situation implies that the shaft lining design must take into consideration not only the geomechanical properties of the rock mass but also the virgin stresses (often having significant values). In this paper, the methodology of the shaft lining and shaft station lining design for a deep shaft is presented based on the Victoria Mine located in Canada. Taking into consideration the geological structure as well as the results of the laboratory tests, the properties of the rock mass were derived. Next, the numerical calculation was performed based on the elasto-plastic model of the rock mass. The numerical analysis consisted of simulation of the multistage technology of the shaft excavation and lining execution. This allowed to estimate the forces in rock bolts of the temporary ground support as well as stresses in the final concrete lining of the shaft.
Alexander L.G., Hosking A.D. (1971). Principles of rock bolting formation of a support medium. In Symposium on Rock Bolting.
Arjang B., Herget G. (1997). In situ ground stresses in the Canadian hardrock mines: an update. International Journal of Rock Mechanics and Mining Sciences, 34(3), 15-e1.
Barton N., Lien R., Lunde J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock mechanics, 6(4), 189-236.
Barton N., Loset F., Lien R., Lunde J. (1980, June). Application of Q-system in design decisions concerning dimensions and appropriate support for underground installations. In Proceedings of the International.
Conference on Subsurface Space. Pergamon Press, 553-561.
Bieniawski Z.T. (1979, January). The geomechanics classification in rock engineering applications. In 4th ISRM Congress. International Society for Rock Mechanics. Design of the shaft lining and shaft stations for deep polymetallic ore deposits… 139.
Butra J., Dębkowski R., Pawelus D., Szpak M. (2011). Wpływ naprężeń pierwotnych na stateczność wyrobisk górniczych. CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud, 58(1), 43-71.
Chen J., Yang Y., Ye C., Yang Y., Xiao, M. (2014). Three-Dimensional Numerical Analysis of Compound Lining in Complex Underground Surge-Shaft Structure. Mathematical Problems in Engineering.
Deere D.U., Peck R.B., Parker H.W., Monsees J.E., Schmidt B. (1970). Design of tunnel support systems. Highway Research Record, (339).
Dietz R.S. (1964). Sudbury structure as an astrobleme. The Journal of Geology, 412-434. Factual Report of Geotechnical Study, Shaft Pilot Hole FNX1204. (2012).
Farrow C.E.G., Everest J., Gibbins S., Chantal J. (2011). Technical Report on the Victoria Project Deposit, Sudbury, Ontario, Canada.
French B.M. (1967). Sudbury structure, Ontario: some petrographic evidence for origin by meteorite impact. Science, 156(3778), 1094-1098.
Grieve R.A.F., Stӧffler D., Deutsch A. (1991). The Sudbury Structure: controversial or misunderstood?. Journal of Geophysical Research, 96(E5), 22,753-22,764.
Hoek E., Brown E.T. (1980), a). Underground excavations in rock. London, Inst. Min. Metall.
Hoek E., Brown E.T. (1980), b). Empirical strength criterion for rock masses. J. Geotech Engng. Div., ASCE, 106 (GT 9), 1013-1035.
Hoek E., Carranza-Torres C., Corkum B. (2002). Hoek-Brown failure criterion - 2002 edition. Proceedings of NARMS-Tac, 267-273.
Hoek E., Kaiser P.K., Bawden W.F. (1995). Support of underground excavations in hard rock. Rotterdam,Balkema.
Hoek E., Wood D., Shah S. (1992). A modified Hoek-Brown criterion for jointed rock masses. In Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock (Vol. 92, pp. 209-214).
Jia Y.D., Stace R., Williams A. (2013). Numerical modelling of shaft lining stability at deep mine. Mining Technology, 122(1), 8-19.
Marinos P., Hoek E. (2000, November). GSI: a geologically friendly tool for rock mass strength estimation. In ISRM International Symposium. International Society for Rock Mechanics.
Minova, Atlas Corpo Swellex Rock Bolts Catalogue. (2009).
NASA image of Sudbury Crater,
NGI, Q-system Handbook, 2013.
Petrus J.A., Ames D.E., Kamber B.S. (2014). On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide. Terra Nova. Phase2. (n.d.). Retrieved February 25, 2015, from (Phase2 v9).
PN-G-05015: 1997. Szyby górnicze. Obudowa. Zasady projektowania.
PN-G-05016: 1997. Szyby górnicze. Obudowa. Obciążenia.
Pope K.O., Kieffer S.W., Ames D.E. (2004). Empirical and theoretical comparisons of Chicxulub and Sudbury impact structures. Meteoritics & Planetary Science, 39(1), 97-116.
Przybylski B., Badura J. (2004). Czy struktury koliste w Sudetach mogą mieć genezę uderzeniową?. Przegląd Geologiczny, 52(10), 971-978.
Report on Mini-Frac In-Situ Stress Estimation, KGHM Victoria Project. (2013).
Rozporządzenie Ministra Gospodarki z dnia 28 czerwca 2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycznego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych (Dz. U. Nr 139, poz. 1169, z 2006 r. Nr 124, poz. 863 oraz z 2010 r. Nr 126, poz. 855).
Stillborg B. (1994). Professional users handbook for rock bolting. 2nd edn. Clausthal-Zellerfeld: TransTech Publications.
Terzaghi K. (1946). Rock defects and loads on tunnel supports.
Trifu C.I., Suorineni F.T. (2009). Use of microseismic monitoring for rockburst management at Vale Incomines. In Proceedings of 7th International Symposium on Rockburst and Seismicity in Mines. New York. 1105-1114.