Investigation about the contribution of tectonic conditions to mining subsidence parameters
More details
Hide details
Technische Universität Bergakademie Freiberg
Aleksandra Babaryka   

Technische Universität Bergakademie Freiberg
Mining Science 2022;29:105–118
Underground infrastructure of any kind can affect the surface by inducing ground movements. The ability of precise subsidence prediction is crucial for environmental management. Prediction methods in practice are mainly based on influence functions that are symmetrical and provide comparably smooth profiles. In the past, deviations from the predictions have been detected. The ability of modern geomonitoring data makes the deviation even more obvious today. One of the reasons for the deviations are the regional tectonic stress conditions. To justify further investigation into the impact of tectonic conditions on the subsidence parameters, numerical experiments were conducted based on a hypothetical case of a homogenous sedimentary rock under different stress conditions. As a result, deviation of up to 7% of the subsidence profile parameters was detected. The results can be considered significant and encourage researchers to investigate the topic further to extend the currently used prediction methods to take into count the tectonic conditions. The research is based on numerical simulation and provides only theoretical result, implementation and validation of the theory in the field are left for further investigation.
ANDERSON E.M., 1951, The Dynamics of Faulting and Dyke Formation with Applications to Brit-ain, Oliver and Boyd, Edinburgh.
AURELIO M.A., 2008, Shear partitioning in the Philippines: Constraints from Philippine Fault and global positioning system data, DOI: 10.1111/j.1440-1738.2000.00304.x.
AWERSHIN S.G., 1947, Сдвижение горных пород при подземных разработках, Ugletekhizdat.
BALS R., 1931/1932, Problem of mining subsidence prediction, Deutscher Markscheider-Verein e.V, Mitteilungen aus dem Markscheidewesen, Stuttgart, Germany, 98–111.
BERRY D.S., 1963, Ground movement considered as an elastic phenomenon, Min. Engr., 123 (37), 28–41.
BUSCH A., 2014, Bergwerk Ost der RAG AG, Analyse von Senkungserscheinungen außerhalb des prognostizierten Einwirkungsbereiches, Institut für Geothechnik und Markscheidewesen, TU Clausthal.
BUSCH A., 2017, Bergwerk Lippe der RAG AG, Analyse von Senkungserscheinungen außerhalb des prognostizierten Einwirkungsbereiches, Institut für Geothechnik und Markscheidewesen, TU Clausthal.
BUSCH A., 2017, Bergwerk Lohberg/Osterfeld der RAG AG, Analyse von Senkungserscheinungen außerhalb des prognostizierten Einwirkungsbereiches, Institut für Geothechnik und Markscheidewesen, TU Clausthal.
GARGANI J., GEOFFROY L., GAC S., CRAVOISIER S., 2006, Fault slip and Coulomb stress varia-tions around a pressured magma reservoir : consequences on seismicity and magma intrusion, Terra Nova., 18 (6), 403–411.
GEERTSMA J., 1973, A basic theory of subsidence due to reservoir compaction: the homogeneous case, Verhandelingen Kon. Ned. Geol. Mijnbouwk. Gen., 28, 43–62.
GLEDHILL K., ROBINSON R., WEBB T., ABERCROMBIE R., BEAVAN J., COUSINS J., 2000, The Mw 6.2 Cass, New Zealand, earthquake of 24 November 1995: reverse faulting in a strike-slip region, New Zealand Journal of Geology and Geophysics, Vol. 43, 255–269.
HEGEMANN M., 2020, Die Trogtheorie von Karl Lehmann- ein Rück- und Ausblick nach 100 Jah-ren, Markscheidewessen, 28–34.
HELMUT F.S., 2008, The Role of Advanced Constitutive Models in Geotechnical Engineering, Geo-mechanic and Tunneling,
KNOTHE S., 1953, Równanie profilu ostatecznie wykształconej niecki osiadania (A profile equation for a definitely shaped subsidence through), Archiwum Górnictwa i Hutnictwa.
KOCHMAŃSKI T., 1955, Obliczanie ruchów punktów górotworu pod wpływem eksploatacji gór-niczej, Polska Akademia Nauk, Komitet Geodezji, PWN, Warszawa.
KOLMOGOROV A.N., 1930/1932, Об аналитических методах в теории вероятностей, УМН (1930), Vol. 5, 5–41 (German) Ueber die analytischen Methoden in der Wahrscheinlich-keitsrechnung, Math. Ann., 1930, 104, 415–458.
KRATZSCH H., 1983. Mining Subsidence Engineering, Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-642-81923-0.
KWINTA A., GRADKA R., 2018, Mining exploitation influence range, Natural Hazards, 94, 979–997,
LEKHNITSKII S.G., 1963, Theory of Elasticity of an Anisotropic Body, Holden-Day.
LITWINISZYN J., 1958, Statistical methods in the mechanics of granular bodies, Rheol. Acta, 1, 146–150,
LITWINISZYN J., 1994, The Gauss function and the phenomena of rock mass subsidence and dis-placements of granular media, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 31, 143–148, ISSN 0148-9062,
LITWINISZYN J., 1992, Entropy in the phenomenon of granular media displacement, Arch. Appl. Mech., 62, 404–412,
MARK C., GADDE M., 2010. Global trends in coal mine horizontal stress measurements, [in:] N. Aziz (Ed,), 10th Underground Coal Operators’ Conference, University of Wollongong and the Australasian Institute of Mining and Metallurgy, 21–39.
OKAL E.A., 2009, The 1956 earthquake and tsunami in Amorgos, Greece, Geophysical Journal International., 178 (3), 1533–1554,
QUASNITZA H., 1988, Eine Strategie zur Kalibrierung marktschreierischer Bewegungsmodelle und zur Prädiktion von Bewegungselementen, Technischen Universität Clausthal, Germany, 90.
SASHURIN A.D., 1999, Сдвижение горных пород на рудниках черной металлургии, ISBN 5-7691-0897-5, 268.
SHIKAKURA Y., FUKAHATA Y., HIRAHARA K., 2014, Long-term changes in the Coulomb fail-ure function on inland active faults in southwest Japan due to east-west compression and inter-plate earthquakes, J. Geophys. Res. Solid Earth, 119, 502–518,
SROKA A., 1993, Zum Problem der Abbaugeshwindigkeit aus bergschadenskundlicher Sicht, Un-derground Exploration School, Polish Academy of Sciences, Krakau, 15–40.
SROKA A., 2001, Die „sociale“ Abbauverträglichkeit – der Grundgedanke der bergschadensmin-imierenden Abbauplanung. Das Markscheidewesen in der Rohstoff-, Energie- und Entsorgung-swirtschaft, 43 wissenshaftliche Tagung des Deutschen Marksheider-Vereins, 37–46.
SUCHOWERSKA IWANEC A.M., CARTER J.P., HAMBLETON J.P., 2016, Geomechanics of sub-sidence above single and multi-seam coal mining, Journal of Rock Mechanics and Geotechnical Engineering, 304–313, ISSN 1674-7755,
TSANAKAS K., KARYMBALIS E., GAKI-PAPANASTASSIOU K., MAROUKIAN H., 2019, The Uplifted Terraces of the Arkitsa Region, NW Evoikos Gulf, Greece: A Result of Combined Tectonic and Volcanic Processes. Geomorphology of the Pieria Mtns, Northern Greece, H. Journal of Maps, Vol. 15, No. 22, 499–508,
VUŠOVIĆ N., VLAHOVIĆ M., KRŽANOVIĆ D., 2021, Stochastic method for prediction of subsid-ence due to the underground coal mining integrated with GIS, a case study in Serbia, Environ. Earth Sci., 80, 67,
WANG X., KULATILAKE P.H.S.W., SONG W.D., 2012, Stability investigations around a mine tunnel through three-dimensional discontinuum and continuum stress analyses, Tunnel. Undergr. Space Technol., 32, 98–112.
XIA K., CHEN C., LIU X. et al., 2016, Mining-induced ground movement in tectonic stress metal mines: a case study, Bull. Eng. Geol. Environ., 75, 1089–1115,
XIA Kz., CHEN Cx., LIU Xm. et al., 2017, Ground movement mechanism in tectonic stress metal mines with steep structure planes, J. Cent. South Univ., 24, 2092–2104,