120.55
ICV
8
MNiSW
CC BY-NC 3.0 Polska
 
 

Optimizing splice geometry in multiply conveyor belts with respect to stress in adhesive bonds

Mirosław Bajda 1  ,  
 
1
Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Poland
Mining Science 2018;25:195–206
KEYWORDS:
TOPICS:
ABSTRACT:
This paper presents the results of investigations into stress distribution in the adhesive bonds of multiply conveyor belt splices. The splices were cold-vulcanized with the use of chemically hardening glues having various strength parameters. The research results demonstrated that the length of splices may be reduced without the risk of lowering their tensile strength and fatigue life. The paper presents stress values in adhesive joints of various belt types and the influence that the properties of belts, splices and splicing materials have on stress values in the adhesive bond of the splice.
CORRESPONDING AUTHOR:
Mirosław Bajda   
Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Poland
 
REFERENCES (23):
1. BAJDA M., BŁAŻEJ R, JURDZIAK L., HARDYGÓRA M., 2017, Impact of differences in durability of vulcanized and adhesive joints on the operating costs of conveyor belts in underground mines, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, No. 99, pp. 71–88, ISSN: 2080-0819 (in Polish).
2. BAJDA M., BŁAŻEJ R., HARDYGÓRA M., 2016, Impact of selected parameters on the fatigue strength of splices on multiply textile conveyor belts, World Multidisciplinary Earth Sciences Symposium (WMESS 2016), 5–9 September 2016, Prague, Czech Republic, IOP Publishing,.
3. art. 052021, pp. 1–6.
4. BŁAŻEJ R., JURDZIAK L., KAWALEC W., 2015, Why Weibull Distribution Can Be Used to Describe Belt Segment and Belt Loop Operating Time and Why It Is Not Enough To Use It To Predict Remaining Belt Life?, Proceedings of the World Congress on Engineering, WCE 2015, Vol. I, pp. 557–561.
5. BŁAŻEJ R., JURDZIAK L., KAWALEC W., 2016, Condition monitoring of conveyor belts as a tool for proper selection of their replacement time, Proceedings of the Fourth International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO 2014, Lyon, France, December 15–17, Springer, No. 4, pp. 483–494.
6. GEESMANN F.O., 2001, Experimentelle und Theoretische Untersuchungen der Bewegungswiderstände von Gurtförderanlagen. Disertation. Universität Hannover, 2001.
7. GŁADYSIEWICZ L., KONIECZNA M., 2016, Theoretical basis for determining rolling resistance of belt conveyors, Mining Science, Vol. 23, 105–120.
8. GŁADYSIEWICZ L., KAWALEC W., KRÓL R., 2016, Selection of carry idlers spacing of belt conveyor taking into account random stream of transported bulk material, Eksploatacja i Niezawodność – Maintenance and Reliability, 18 (1), 32–37.
9. GŁADYSIEWICZ L., KRÓL R., KISIELEWSKI W., KASZUBA D., 2017, Experimental determination of belt conveyors artificial friction coefficient, Acta Montanistica Slovaca, 22 (2), 206–214.
10. HARDYGÓRA M., KOMANDER H., BŁAŻEJ R., JURDZIAK L., 2012, Method of predicting the fatigue strength in multiplies splices of belt conveyors, Eksploatacja i Niezawodność – Maintenance and Reliability, 14 (2), 171–175.
11. HARDYGÓRA M., WACHOWICZ J., CZAPLICKA-KOLARZ K., MARKUSIK S., Taśmy przenośni-kowe, Wydawnictwo Naukowo-Techniczne Fundacja “Książka Naukowo-Techniczna”, Warszawa 1999, ISBN 83-204-2402-X.
12. HOU YOU-FU, MENG QING-RUI, 2008, Dynamic characteristics of conveyor belts, Journal of China University of Mining and Technology, 18 (4), 629–633.
13. KATTERFELD A., RICHTER C., GŁADYSIEWICZ A., SCHWANDTKE R., 2016, Reducing the energy consumption of belt conveyors by the use of intelligent garlands, [in:] ICBMH 2016, 12th International Conference on Bulk Materials Storage, Handling and Transportation, proceedings; Darwin, Australia, 11–14 July 2016, ed. by David Hastie – The Institution of Engineers, Australia, pp. 600–605.
14. KAWALEC W., KULINOWSKI P., 2007, Computations of belt conveyors, Transport Przemysłowy,.
15. 1 (27) (in Polish).
16. KIRJANÓW A., 2015, Analysis of the results of the strength tests of finger splices, Mining Science, Vol. 22 (Special Issue 2), 31–37.
17. KOMANDER G., KOMANDER H., BAJDA M., HARDYGÓRA M., 2011, Analysis of the reasons of reduced strength of conveyor textile belts joints, Transport & Logistics (Belgrade), No. 9, pp. 517–521.
18. KOZŁOWSKI T., 2015, The impact of joint’s quality on their strength in St 3150 conveyor belts, Mining Science, Vol. 22 (Special Issue 2), 47–55.
19. KRÓL R., KISIELEWSKI W., KASZUBA D., GŁADYSIEWICZ L., 2017, Testing belt conveyor re-sistance to motion in underground mine conditions, International Journal of Mining, Reclamation and Environment, 31 (1), pp. 78–90.
20. Project NCBiR, 2015, contract no. PBS3/A2/17/2015. Multiply conveyor belt splices of increased service life, Raport końcowy, Politechnika Wrocławska, Wrocław 2018 (not published).
21. U.S. Department of Energy’s, 2004. Effective Conveyor Belt Inspection for Improving Mining Productivity, U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, http://www.nrec.ri.cmu.edu/.
22. projects/belt_inspection/tech/effectconvey.pdf.
23. ŻUR T., HARDYGÓRA M., Przenośniki taśmowe w górnictwie, Wyd. „Śląsk”, Katowice 1996.
eISSN:2353-5423
ISSN:2300-9586