PL EN
Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill
 
Więcej
Ukryj
1
Wrocław University of Science and Technology
2
National University of Science and Technology MISiS, 119049, Moscow, Leninskiy prospekt 4, Russia
3
Itasca Consultants GmbH, 45886 Gelsenkirchen, Leithestr. 111a, Germany
AUTOR DO KORESPONDENCJI
Jarosław Marek Rybak   

Wrocław University of Science and Technology
 
Mining Science 2021;28:19–32
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The analysis of the technogenic impact of mining on the environment was carried out. A transition to geotechnology with backfill is proposed in order to reduce the impact of mining operations. The paper presents the results of research aimed at finding the parameters of the technology for mining salt deposits with backfill and the determination of the backfilling influence on the dynamics of deformation of the undermined rock mass. The results of studies on the qualitative and quantitative assessment of the rock mass behavior (by the finite element method with the use of the FLAC3D software), extracted by the harvesters, are given. The research shows the influence of mining on the mass, changes in the maximum stresses during the cementing of the paste backfill in the stopes. It is recommended to use this approach in geotechnical assessment of the rock mass behavior in the conditions of using development systems of various classes.
 
REFERENCJE (29)
1.
ADIGAMOV A.E., KHAIRUTDINOV M.M., 2008, Математическое моделирование при определении нагрузок на закладку (Mathematical modeling when determining loads on a backfill), Mining Information and Analytical Bulletin, No. 11, 186–190 (in Russian).
 
2.
BARYAKH A.A., EREMINA N.A., GRACHEVA E.A., 1994, Оценка условий развития трещин в под-.работанном соляном массиве (Assessment of the conditions for the development of cracks in the mined salt mass), Journal of Mining Science, No. 5, 84 (in Russian).
 
3.
BARYAKH A.A., TELEGINA E.A., 2013, Анализ условий разрушения водозащитной толщи при различных вариантах камерной системы разработки (Analysis of the destruction conditions of the waterproof layer for various stoping system), Mining Information and Analytical Bulletin, No. 1, 34–40 (in Russian).
 
4.
DOBRZYCKI P., IVANNIKOV A.L., RYBAK J., SHKODKINA V.O., TYULYAEVA Yu., 2019a, The impact of Rapid Impulse Compaction (RIC) of large non-cohesive material deposits on the surround-ing area, IOP Conf. Ser.: Earth Environ. Sci., Vol. 362, 012132.
 
5.
DOBRZYCKI P., KONGAR-SYURYUN Ch., KHAIRUTDINOV А., 2019b, Vibration reduction techniques for Rapid Impulse Compaction (RIC), IOP Conf. Ser.: Journal of Physics, Vol. 1425, 012202.
 
6.
EREMENKO V.A., 2018, Моделирование напряжённо-деформационного состояния горнотехнической системы рудника при соосной отработке трёх этажей камерной системой разработки (в программном комплексе Мap 3D) (Stress state modeling of coaxial three-level open stoping in Map3D), Mining Information and Analytical Bulletin, No. 11, 5–17 (in Russian).
 
7.
ERMOLOVICH O.V., ERMOLOVICH E.A., 2016, Композиционные закладочные материалы с добавкой из механоактивированных отходов обогащения (Composite backfilling materials with the addition of of mechanically activated beneficiation tailings), Izvestiya tulskogo gosudarstvennogo universiteta. Nauki o zemle, No. 3, 24–30 (in Russian).
 
8.
GOLIK V.I., BURDZIEVA O.G., 2016, Повышение безопасности труда увеличением области применения твердеющих смесей из отходов переработки (Increase of work safety by enlargement of field of application of hardening mixtures from processing waste), Occupational Safety in Industry, No. 8, 51–54 (in Russian).
 
9.
GOLIK V., DMYTRAK Y., SERGEEV V., VERNIGOR V., 2018, Влияние хвостохранилищ на окружающую среду горнодобывающего региона (Impact of tailing dumps on the environment of the mining region), Ecology and Industry of Russia, Vol. 22 (6), 44–48 (in Russian).
 
10.
GOLIK V.I., RAZORENOV Yu.I., BRIGIDA V.S., BURDZIEVA O.G., 2020, Механохимическая технология добычи металлов из хвостов обогащения (Mechanochemical technology of metal mining from enriching tails), Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, Vol. 331 (6), 175–183 (in Russian).
 
11.
GOLIK V.I., RAZORENOV Yu.I., LUKYANOV V.G., 2017, Эколого-экономические аспекты ресурсосбережения при разработке месторождений полезных ископаемых (Environmental and eco-nomic aspects of resource saving in mining), Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, Vol. 328 (6), 18–27 (in Russian).
 
12.
Itasca Consulting Group, Inc., 2013, FLAC3D Theory and Background, Minneapolis.
 
13.
KALINSKY O.I., KRUZHKOVA G.V., ALEKSAKHIN A.V., MOLCHANOV G.A., 2019, Selection of the Optimal Strategy for the Supply of Raw Materials Based on Game Theory. Smart technologies and innovations in design for control of technological processes and objects: economy and production, 577–583.
 
14.
KAWALEC J., KWIECIEŃ S., PILIPENKO A., RYBAK J., 2017, Application of crushed concrete in geotechnical engineering – selected issues, IOP Conf. Ser.: Earth Environ. Sci., 95, 022057.
 
15.
KHAYRUTDINOV A.M., KONGAR-SYURYUN Ch., KOWALIK T., FARADZHOV V., 2020a, Improvement of the backfilling characteristics by activation of halite waste for non-waste geotechnology, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 867, 012018.
 
16.
KHAYRUTDINOV A.M., KONGAR-SYURYUN Ch.B., KOWALIK T., TYULYAEVA Yu.S., 2020b, Stress–strain behavior control in rock mass using different-stregth backfill, Mining Informational and Analytical Bulletin, No. 10, 42–55.
 
17.
KHAYRUTDINOV M.M., KONGAR-SYURYUN Ch.B., TYULYAEVA Y.S., KHAYRUTDINOV A., 2020c, Бесцементные закладочные смеси на основе водорастворимых техногенных отходов (Cementless backfill mixtures based on water-soluble manmade waste), Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, Vol. 331 (11), 30–36 (in Russian).
 
18.
KHAIRUTDINOV M.M., VOTYAKOV M.V., 2007, Разработка составов твердеющих закладочных смесей из отходов переработки руд калийных предприятий (Development of hardening filling mixtures compositions from ore processing waste of potash enterprises), Mining Information and Analytical Bulletin, No. 10, 220–222 (in Russian).
 
19.
KONGAR-SYURYUN Ch., TYULYAEVA Y., KHAIRUTDINOV A., KOWALIK T., 2020, Industrial waste in concrete mixtures for construction of underground structures and minerals extraction, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 869, 032004.
 
20.
NIEMIEC D., DURAJ M., CHENG X., MARSCHALKO M., KUBÁČ J., 2017, Selected Black-Coal Mine Waste Dumps in the Ostrava Karviná Region: An Analysis of Their Potential Use, IOP Conf. Ser.: Earth Environ. Sci., Vol. 95, 042061.
 
21.
NOVOSELOV S.V, MELNIK V.V., AGAFONOV V.V., 2017, Экспортно-ориентированная стратегия развития угольных компаний России – основной фактор обеспечения их финансовой устойчивости (Export-oriented development strategy of the coal companies of Russia the main factor en-suring their financial stability), Russian Coal Journal, Vol. 11 (1100), 54–57 (in Russian).
 
22.
ROSCHLAU H., HEINTZE W., 1980, Bergbautechnologie (Lehrbuch). Erzbergbau Kalibergbau, VEB Deutscher Verlag für Grundstoffindustrie.
 
23.
SANZ E., ROSAS P., MENÉNDEZ-PIDAL I., 2016, Drainage and siphoning of a karstic spring: A case study, Journal of Cave and Karst Studies, Vol. 78 (3), 183–197.
 
24.
SANZ-PÉREZ E., MENÉNDEZ-PIDAL I., LOMOSCHITZ A., GALINDO-AIRES R., 2016, The pico de navas slump (Burgos, Spain): A large rocky landslide caused by underlying clayey sand, Journal of Iberian Geology, Vol. 42 (1), 55–68.
 
25.
SHANG PENGQIANG, XIONG XIANXIAO, LI BOYUN, 2011, Discussion on the main potash-concentrated districts and the resource potential in China, Geology of Chemical Minerals, Vol. 33 (1), 1–8.
 
26.
SIDOROVA E., 2019, Modern strategic decisions in the field of waste as a basis of development of cir-cular economy and greening of industrial production. 19th Int. Multidiscip. Sci. GeoConf. SGEM 2019, 531–538.
 
27.
VOTYAKOV M.V., 2009, Повышение полноты извлечения запасов калийных руд на основе закладки выработанного пространства галитовых отходов (Increasing the completeness of the extraction of potash ore reserves based on the backfilling of the mined-out space of halite waste), Cand. Diss. (in Russian).
 
28.
XUQUAN HUANG, HAOBO HOU, MIN ZHOU, WEIXING WANG, 2014, Mechanical properties and microstructure analysis of copper tailings solidifying with different cementitious materials, Advanced Materials Research, Vol. 878, 171–176.
 
29.
ZÁSTĔROVÁ P., NIEMIEC D., MARSCHALKO M., DURĎÁK J., DURAJ M., YILMAZ I., DRUSA M., 2016, Analysis the purposes of land use planning on the hard coal tailing dumps, IOP Conf. Ser.: Earth Environ. Sci., Vol. 44 (2), 022034.
 
eISSN:2353-5423
ISSN:2300-9586