MULTISOURCE DATA INTEGRATION TO INVESTIGATE A 3D LANDSLIDE MORPHOLOGY AFFECTING AN URBAN AREA: CASE OF BORDJ BOU NAAMA (WEST ALGERIA).
 
Więcej
Ukryj
1
Mascara university
AUTOR DO KORESPONDENCJI
Zaagane Mansour   

Mascara university
 
Mining Science 2020;27:227–251
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE ARTYKUŁU
Situated in the northern part of Algeria, Ouarsenis is one of several area affected by landslide phenomena. Indeed, 60 houses, a stadium and a lot of sports infrastructures are affected by the landslides. In this perspective, we have chosen a model of landslide with an area of 166,700 m² affecting the southern part of the Bordj Bou Naama city. In order to characterized the landslide structure, we used multi-source data (geological, topographical, geophysical and geotechnical).. For modeling the 3d landslide surfaces we used three geometric models which are generated from different techniques of interpolation as Inverse Distance Weight (IDW), Minimum Curvature (MC) and Kriging (KO) and applied to the same input data set. The root of the mean square error (RMSE) and visual appearance of the morphology are used to select the best model. Indeed our results show that the KO represents the best model that gives a good result. Quality control is also performed to ensure that the model is suitable for hydro-mechanical modeling. This model show that the total volume of soils moved is ~ 9.8*105m3, in which the volume of geological levels is 828500 m3, 143440 m3 and 11434.32 m3 respectively for the embankments, colluviums and Brown shale. The bleu shale is far from to be affected by this landslides, indeed the deepest zone that the rupture area affects is located at 12 m of depth. These results seem to be very important in order to plan remediation work in this area
 
REFERENCJE (32)
1.
AGUILAR F.J., AGÜERA F., AGUILAR M.A., CARVAJAL F., 2005, Effects of terrain morphology, sampling density and interpolation methods on grid DEM accuracy, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 7, 805–816.
 
2.
APEL M., 2006, From 3D geomodelling systems towards 3D geoscience information systems: data model, query functionality and data management, Computer and Geosciences, 32, 222–229.
 
3.
ARNAUD M., EMERY X., 2000, In: Hermès (Ed.), Estimation et interpolation spatiale: méthodes dé-terministes et méthodes géostatistiques, 216 p.
 
4.
BANCROFT B.A., HOBBS G.R., 1986, Distribution of kriging error and stationarity of the variogram in a coal property, Mathematical Geology, Vol. 18, No. 7, 635–652.
 
5.
BENHAMOU M., 1996, Evolution tectono-eustatique d’un bassin de la Téthys maghrébine: l’Ouarsenis (Algérie) pendant le Jurassique inférieur et moyen, Thèse de Doctorat d’Etat, Université d’Oran, 434 p.
 
6.
BICHLER A., BOBROWSKY P., BEST M., DOUMA M., HUNTER J., CALVERT T., BUNRS R., 2004, Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide, Landslides, Vol. 1, No. 1, 29–40.
 
7.
BURGESS T.M., WEBSTER R., MCBRATNEY A.B., 1981, Optimal interpolation and isarithmetic mapping of soil properties: sampling strategy, Journal of Soil Science, Vol. 32, 643–659.
 
8.
CALEMBERT L., 1952, Etude géologique du Massif culminant de l’Ouarsenis, Gouvernement général de l’Algérie Service de la carte géologique.
 
9.
CAUMON G., COLLON-DROUAILLET P., CARLIER D.V.C., SAUSSE J., VISUER S., 2009, Teach-er’s aide: 3D modeling of geological structures, Mathematical Geosciences, Vol. 41, No. 9, 927–945.
 
10.
CHAPLOT V., DARBOUX F., BOURENNANE H., LEGUEDOIS S., SILVERA N., PHACHOMPHON K., 2006, Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density, Geomorphology, Vol. 77, 126–141.
 
11.
CORNFORTH D.H., 2005. Landslides in practice: investigation, analysis and remedial/ reventative options in soils, Wiley, USA, 624 pp.
 
12.
DECLERCQ F., 1996, Interpolation methods for scattered sample data: accuracy, spatial patterns, processing time, Cartography and Geographical Information Systems, Vol. 23, No. 3, 128–144.
 
13.
FARES KHODJA F., 1968, Contribution à l’étude stratigraphique et micropaléontologique du jurassique du Tell algérien (massif culminant de l’Ouarsenis, Oued Fodda et les massifs de la plaine du Chélif-Babor). Thèse 3eme cycle, Faculté des sciences de Paris, 166 p.
 
14.
FISHER P.F., TATE N.J., 2006, Causes and consequences of error in digital elevation models, Progress in Physical Geography, Vol. 30, No. 4, 467–489.
 
15.
FRIZON DE LAMOTTE D., FOURDAN B., LELEU S., LEPARMENTIER F., DE CLARENS P., 2015, Style of rifting and the stages of Pangea breakup, Tectonics, 34 (5), 1009–1029.
 
16.
GRANDJEAN G., MALET J.P., BITRI A., MÉRIC O., 2007 Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides, Bulletin de la société géologique de France, 178 (2), 127–136.
 
17.
JONGMANS D., GARAMBOIS S., 2007, Geophysical investigation of landslides: a review, Bulletin de la Société géologique de France, 178 (2), 101–112.
 
18.
KALENCHUK K.S., HUTCHINSON D.J., DIEDERICHS M.S., 2009, Application of spatial prediction techniques to defining three-dimensional shear surface geometry, Landslide, Vol. 6, 321–333.
 
19.
KIENZLE S., 2004, The effect of DEM raster resolution on first order, second order and compound terrain derivatives, Transactions in GIS, Vol. 8, No. 1, 83–112.
 
20.
LEPRÊTRE R., DE LAMOTTE D.F., COMBIER V., GIMENO-VIVES O., MOHN G., ESCHARD R., 2018, The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin.
 
21.
MALET J.-P., 2003, Les glissements de type écoulement dans les marnes noires des Alpesdu Sud. Mor-phologie, fonctionnement et modélisation hydromécanique, Ph.D. Thesis in Earth Sciences, Université Louis Pasteur, Strasbourg, 364 p.
 
22.
MARINONI O., 2003, Improving geological models using a combined ordinary-indicator kriging ap-proach, Engineering Geology, Vol. 69, 37–45.
 
23.
MATTAUER M., 1958, Etude géologique de l’Ouarsenis oriental (Algérie), Bulletin des Services Géologiques de l’Algérie. Monographie Régionale, 17, 534 p.
 
24.
MCKEAN J., ROERING J., 2004, Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, Vol. 57, 331–351.
 
25.
OLIVIER K., THIERRY M., 2008, 3D geological modeling from boreholes, cross-sections and geo-logical maps, application over former natural gas storages in coal mines, Computers and Geosciences, 34, 278–290.
 
26.
SCHMUTZ M., GUERIN R., ANDRIEUX P., MAQUAIRE O., 2009, Determination of the 3D structure of an earthflow by geophysical methods: the case of Super Sauze, in the French southern Alps, Journal of Applied Geophysics, Vol. 68, No. 4, 500–507.
 
27.
SOWERS G.F., ROYSTER D.L., 1978, Field Investigation, in Landslide Analysis and Control. In: R.L. Schuster, R.J. Krizek (Eds.), Special report 176, National Academy of Sciences, Washington, 234 pp.
 
28.
TRAVELLETTI J., MALET J.P., 2012, Characterization of the 3D geometry of flow-like landslides:.
 
29.
A methodology based on the integration of heterogeneous multi-source data, Engineering Geology, Vol. 128, 19 p.
 
30.
VAN DEN EECKHAUT M., POESEN J., VERSTRAETEN G., VANACKER V., MOEYERSONS J., NYSSEN J., VAN BEEK L.P.H., 2005, The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides, Geomorphology, 67 (3–4), 351–363.
 
31.
ZAAGANE M., BENHAMOU M., DONZÉ F., REFAS S., HAMIMED A., 2015, Morphometric analysis of landslides in the Ouarsenis area (west Algeria): implications for establishing a relationship between tectonic, geomorphological, and hydraulic indexes, Arabian Journal of Geosciences, 8 (9), 6465–6482.
 
32.
MANSOUR Z., SORAYA R., ABDELKADER K., DONZÉ F., ABDERAHMANE H., AISSA S., SOUAD M., 2016, Relationship between geo-structural evolution and development of karstic systems in the culminating area of Ouarsenis (West Algeria), Arabian Journal of Geosciences, 9 (14), 638.
 
eISSN:2353-5423
ISSN:2300-9586